Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2518, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514641

ABSTRACT

DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.


Subject(s)
Tumor Suppressor Protein p53 , Xeroderma Pigmentosum , Animals , Humans , Mice , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Xeroderma Pigmentosum/genetics
2.
Nat Commun ; 12(1): 520, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483506

ABSTRACT

The fusion oncogene RUNX1/RUNX1T1 encodes an aberrant transcription factor, which plays a key role in the initiation and maintenance of acute myeloid leukemia. Here we show that the RUNX1/RUNX1T1 oncogene is a regulator of alternative RNA splicing in leukemic cells. The comprehensive analysis of RUNX1/RUNX1T1-associated splicing events identifies two principal mechanisms that underlie the differential production of RNA isoforms: (i) RUNX1/RUNX1T1-mediated regulation of alternative transcription start site selection, and (ii) direct or indirect control of the expression of genes encoding splicing factors. The first mechanism leads to the expression of RNA isoforms with alternative structure of the 5'-UTR regions. The second mechanism generates alternative transcripts with new junctions between internal cassettes and constitutive exons. We also show that RUNX1/RUNX1T1-mediated differential splicing affects several functional groups of genes and produces proteins with unique conserved domain structures. In summary, this study reveals alternative splicing as an important component of transcriptome re-organization in leukemia by an aberrant transcriptional regulator.


Subject(s)
Alternative Splicing , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid/genetics , Oncogene Proteins, Fusion/genetics , RUNX1 Translocation Partner 1 Protein/genetics , Acute Disease , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Profiling/methods , Humans , Leukemia, Myeloid/pathology , Models, Genetic , Oncogene Proteins, Fusion/metabolism , RNA Interference , RNA Isoforms/genetics , RNA Isoforms/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...