Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroinform ; 17: 1271059, 2023.
Article in English | MEDLINE | ID: mdl-38025966

ABSTRACT

To build biophysically detailed models of brain cells, circuits, and regions, a data-driven approach is increasingly being adopted. This helps to obtain a simulated activity that reproduces the experimentally recorded neural dynamics as faithfully as possible, and to turn the model into a useful framework for making predictions based on the principles governing the nature of neural cells. In such a context, the access to existing neural models and data outstandingly facilitates the work of computational neuroscientists and fosters its novelty, as the scientific community grows wider and neural models progressively increase in type, size, and number. Nonetheless, even when accessibility is guaranteed, data and models are rarely reused since it is difficult to retrieve, extract and/or understand relevant information and scientists are often required to download and modify individual files, perform neural data analysis, optimize model parameters, and run simulations, on their own and with their own resources. While focusing on the construction of biophysically and morphologically accurate models of hippocampal cells, we have created an online resource, the Build section of the Hippocampus Hub -a scientific portal for research on the hippocampus- that gathers data and models from different online open repositories and allows their collection as the first step of a single cell model building workflow. Interoperability of tools and data is the key feature of the work we are presenting. Through a simple click-and-collect procedure, like filling the shopping cart of an online store, researchers can intuitively select the files of interest (i.e., electrophysiological recordings, neural morphology, and model components), and get started with the construction of a data-driven hippocampal neuron model. Such a workflow importantly includes a model optimization process, which leverages high performance computing resources transparently granted to the users, and a framework for running simulations of the optimized model, both available through the EBRAINS Hodgkin-Huxley Neuron Builder online tool.

2.
Front Neuroinform ; 16: 991609, 2022.
Article in English | MEDLINE | ID: mdl-36225653

ABSTRACT

In the last decades, brain modeling has been established as a fundamental tool for understanding neural mechanisms and information processing in individual cells and circuits at different scales of observation. Building data-driven brain models requires the availability of experimental data and analysis tools as well as neural simulation environments and, often, large scale computing facilities. All these components are rarely found in a comprehensive framework and usually require ad hoc programming. To address this, we developed the EBRAINS Hodgkin-Huxley Neuron Builder (HHNB), a web resource for building single cell neural models via the extraction of activity features from electrophysiological traces, the optimization of the model parameters via a genetic algorithm executed on high performance computing facilities and the simulation of the optimized model in an interactive framework. Thanks to its inherent characteristics, the HHNB facilitates the data-driven model building workflow and its reproducibility, hence fostering a collaborative approach to brain modeling.

3.
Front Neuroinform ; 15: 713899, 2021.
Article in English | MEDLINE | ID: mdl-34512300

ABSTRACT

The description of neural dynamics, in terms of precise characterizations of action potential timings and shape and voltage related measures, is fundamental for a deeper understanding of the neural code and its information content. Not only such measures serve the scientific questions posed by experimentalists but are increasingly being used by computational neuroscientists for the construction of biophysically detailed data-driven models. Nonetheless, online resources enabling users to perform such feature extraction operation are lacking. To address this problem, in the framework of the Human Brain Project and the EBRAINS research infrastructure, we have developed and made available to the scientific community the NeuroFeatureExtract, an open-access online resource for the extraction of electrophysiological features from neural activity data. This tool allows to select electrophysiological traces of interest, fetched from public repositories or from users' own data, and provides ad hoc functionalities to extract relevant features. The output files are properly formatted for further analysis, including data-driven neural model optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...