Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 780: 146581, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33774298

ABSTRACT

Anthropogenic N emissions represent a potential threat for forest ecosystems, and environmental indicators that provide insight into the changing forest N cycle are needed. Tree ring N isotopic ratios (δ15N) appear as a contentious choice for this role as the exact mechanisms behind tree-ring δ15N changes seldom benefit from a scrutiny of the soil-to-tree N continuum. This study integrates the results from the analysis of soil chemistry, soil microbiome genomics, and δ15N values of soil N compounds, roots, ectomycorrhizal (EcM) fungi and recent tree rings of thirteen white spruce trees sampled in five stands, from two regions exposed to moderate anthropogenic N emissions (3.9 to 8.1 kg/ha/y) with distinctive δ15N signals. Our results reveal that airborne anthropogenic N with distinct δ15N signals may directly modify the NO3- δ15N values in surface soils, but not the ones of NH4+, the preferred N form of the studied trees. Hence, the tree-ring δ15N values reflect specific soil N conditions and assimilation modes by trees. Along with a wide tree-ring δ15N range, we report differences in: soil nutrient content and N transformation rates; δ15N values of NH4+, total dissolved N (TDN) and EcM mantle enveloping the root tips; and bacterial and fungal community structures. We combine EcM mantle and root δ15N values with fungal identification to infer that hydrophobic EcM fungi transfer N from the dissolved organic N (DON) pool to roots under acidic conditions, and hydrophilic EcM fungi transfer various N forms to roots, which also assimilate N directly under less acidic conditions. Despite the complexities of soil biogeochemical properties and processes identified in the studied sites, in the end, the tree-ring δ15N averages inversely correlate with soil pH and anthropogenic N inputs, confirming white spruce tree-ring δ15N values as a suitable indicator for environmental research on forest N cycling.


Subject(s)
Mycorrhizae , Soil , Ecosystem , Forests , Mycorrhizae/chemistry , Nitrogen/analysis , Nitrogen Isotopes/analysis , Taiga
2.
Environ Sci Technol ; 49(20): 12062-70, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26404505

ABSTRACT

The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region.


Subject(s)
Environmental Monitoring/methods , Lakes/analysis , Oil and Gas Fields , Petroleum , Polycyclic Aromatic Hydrocarbons/analysis , Alberta , Carbon Isotopes/analysis , Coal , Hydrocarbons , Petroleum/analysis , Phenanthrenes/analysis , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 47(15): 8265-72, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23815525

ABSTRACT

Nitroglycerin (NG) and nitrocellulose (NC) are constituents of double-base propellants used notably for firing antitank ammunitions. Nitroglycerin was detected in soil and water samples from the unsaturated zone (pore water) at an active antitank firing position, where the presence of high nitrate (NO3(-)) concentrations suggests that natural attenuation of NG is occurring. However, concentrations alone cannot assess if NG is the source of NO3(-), nor can they determine which degradation processes are involved. To address this issue, isotopic ratios (δ(15)N, δ(18)O) were measured for NO3(-) produced from NG and NC through various controlled degradation processes and compared with ratios measured in field pore water samples. Results indicate that propellant combustion and degradation mediated by soil organic carbon produced the observed NO3(-) in pore water at this site. Moreover, isotopic results are presented for NO3(-) produced through photolysis of propellant constituents, which could be a dominant process at other sites. The isotopic data presented here constitute novel information regarding a source of NO3(-) that was practically not documented before and a basis to study the contamination by energetic materials in different contexts.


Subject(s)
Isotopes/chemistry , Military Personnel , Nitrates/chemistry , Water Pollutants, Chemical/chemistry , Chromatography, High Pressure Liquid
4.
Rapid Commun Mass Spectrom ; 26(23): 2791-804, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23124671

ABSTRACT

RATIONALE: The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. METHODS: In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. RESULTS: The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. CONCLUSIONS: We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling.

5.
Anal Chem ; 84(23): 10419-25, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23121597

ABSTRACT

Here we report a novel approach to extract, isolate, and characterize high molecular weight organic acids found in the Athabasca oil sands region using preparative capillary gas chromatography (PCGC) followed by thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS). A number of different "naphthenic acids" surrogate standards were analyzed as were samples from the bitumen-rich unprocessed McMurray Formation, oil sands process water, groundwater from monitoring wells, and surface water from the Athabasca River. The intramolecular carbon isotope signature generated by online pyrolysis (δ(13)C(pyr)) showed little variation (±0.6‰) within any given sample across a large range of mass fractions separated by PCGC. Oil sand, tailings ponds, and deep McMurray Formation groundwater were significantly heavier (up to ∼9‰) compared to surface water and shallow groundwater samples, demonstrating the potential use of this technique in source apportionment studies.

6.
Rapid Commun Mass Spectrom ; 25(4): 469-75, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21259354

ABSTRACT

Tree-ring nitrogen concentrations and isotope ratios (δ(15)N) are gaining in popularity for environmental research although their use is still debated because of nitrogen mobility in tree stems. Modern studies generally present results on wood that is pre-treated to remove soluble nitrogen compounds and to minimize the impact of radial translocation on tree-ring nitrogen environmental records. However, the necessity to use such pre-treatment has never been fully assessed. Here we compare the nitrogen concentrations and δ(15)N values of two wood preparation protocols applied to beech and red spruce tree rings for the removal of soluble compounds from ring pairs with non pre-treated tree rings. For both tree species, pre-treatment did not minimize the radial patterns of tree-ring nitrogen concentrations and the increasing concentration trends that are coincident with the heartwood-sapwood boundary. Therefore, even if the tree-ring nitrogen concentrations are slightly modified by pre-treatment, these concentrations are considered to reflect internal stem processes rather than environmental conditions in both species. The δ(15)N values were similar for untreated and pre-treated ring pairs, suggesting that wood pre-treatment did not substantially change the δ(15)N values and temporal trends in ring series. In addition, tree-ring δ(15)N series of untreated and pre-treated wood did not show any sign of influence of the heartwood-sapwood boundary in either tree species, indicating that nitrogen translocation did not generate significant isotopic fractionation. We therefore suggest that untreated ring δ(15)N values of beech and red spruce trees can be used for environmental research.


Subject(s)
Chemistry Techniques, Analytical/methods , Mass Spectrometry/methods , Nitrogen Isotopes/analysis , Nitrogen/analysis , Trees/chemistry , Fagus/chemistry , Nitrogen/chemistry , Nitrogen Isotopes/chemistry , Picea/chemistry , Plant Stems/chemistry , Regression Analysis , Wood/chemistry
7.
Rapid Commun Mass Spectrom ; 23(14): 2213-20, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19533600

ABSTRACT

Gaseous membrane permeation (MP) technologies have been combined with continuous-flow isotope ratio mass spectrometry for on-line delta13C measurements. The experimental setup of membrane permeation-gas chromatography/combustion/isotope ratio mass spectrometry (MP-GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady-state conditions and performs on-line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the delta13C values of CO2 permeated on-line give the same isotopic results as off-line static dual-inlet IRMS delta13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on-line delta13C determination. The feed-formaldehyde delta13C value was pre-determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on-line yields a 13C enrichment relative to the feed delta13C value, the isotopic fractionation being 1.0026 +/- 0.0003. The delta13C values have been normalized using an adapted two-point isotopic calibration for delta13C values ranging from -42 to -10 per thousand. The MP-GC/C/IRMS system allows the delta13C determination of formaldehyde without chemical derivatization or additional analytical imprecision.

8.
Environ Sci Technol ; 43(3): 604-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19244990

ABSTRACT

Anthropogenic emissions of atmospheric nitrogen have increased over the last century, but the monitoring of nitrous oxide concentrations is only recent. Can trees from temperate regions be used to infer past changes in nitrogen cycles? To considerthis question, we investigate nitrogen isotope (delta15N) ring series from pine and beech trees near Montréal, and beech specimens of Georgian Bay Islands. The delta15N values show coherent intertree and interspecies trends, independent of the sapwood-heartwood transition zones, implying that these results reflect local environmental conditions. At both sites, short-term isotopic fluctuations correlate directly with precipitation and inversely with temperature. Long-term isotope decreases of 1.5 to 2 per thousand suggest progressive changes in soil nitrogen after 1951. In Georgian Bay, an additional important change is inferred on the basis of a 1.5 per thousand increase initiated after 1971. At both sites, long-term series correlate with a proxy for NOx emissions. We propose that the contrasted long-term delta15N changes of Montreal and Georgian Bay reflect deposition of NOx emissions from cars and coal-power plants, with higher proportions from coal burning in Georgian Bay. This research suggests that tree-ring delta15N series may record both, regional climatic conditions and anthropogenic perturbations of N cycles.


Subject(s)
Climate , Nitrogen Isotopes/analysis , Nitrogen Oxides/analysis , Trees/chemistry
9.
J Environ Qual ; 33(1): 13-26, 2004.
Article in English | MEDLINE | ID: mdl-14964354

ABSTRACT

We wanted to test the hypothesis that forest exposure to phytotoxic gases indirectly affects their carbon uptake. We estimated that the reduction of photosynthesis may have reached 20 to 30% at a site located 9 km (test site) from the Horne copper smelter in Rouyn-Noranda, which is a point source of SO2. Twenty-one spruce trees older than 100 yr were selected from seven sites at various distances from the smelter to evaluate conditions prior to and during the periods of smelter operation. The carbon isotope results obtained from spruce tree rings at our test site reveal an unprecedented and abrupt shift of +4/1000 after the onset of smelter operations. This large and permanent shift exceeds natural variations in regional pre-smelter series or in the series at a remote control site. All trees up to 116 km downwind from the smelter show delta13C positive shifts following the onset of operations. There is also a clear inverse relationship between the amplitude of the first-order trends and distance from the smelter. Those delta13C trends indicate that trees exposed to high levels of SO2 decrease their level of CO2 uptake through activation of stomatal closure. This is strongly supported by the significant departure of the Rouyn-Noranda trends from those measured for trees from non-industrialized areas of the Northern Hemisphere, or calculated using global atmospheric conditions. Considering the large number of SO2 point sources in North America, our results imply that CO2 uptake by the boreal forest in the vicinity of these sources may be lower than previously thought.


Subject(s)
Air Pollutants/analysis , Carbon Isotopes/analysis , Sulfur Dioxide/analysis , Trees/chemistry , Cellulose/analysis , Environmental Exposure/analysis , Humans , Industrial Waste/analysis , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...