Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 179: 110029, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34814009

ABSTRACT

Although linear accelerators are used in many security, industrial and medical applications, the existing technologies are too large and expensive for several critical applications such as radioactive source replacement, field radiography and mobile cargo scanners. One of the main requirements for these sources is to be highly portable to allow field operation. In response to this problem, RadiaBeam has designed a hand-portable 1 MeV X-ray source, scalable to higher energies, based on Ku-band split electron linac, that can be used for Ir-192 radioisotope replacement. In this paper, we present its multiphysics and engineering design studies, as well as an accelerating structure prototype along with RF measurements.


Subject(s)
Iridium Radioisotopes/chemistry , Particle Accelerators , Electrons , Equipment Design
2.
Rev Sci Instrum ; 91(4): 044701, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357711

ABSTRACT

Conventional thermionic microwave and radio frequency (RF) guns can offer high average beam current, which is important for synchrotron light and terahertz (THz) radiation source facilities, as well as for industrial applications. For example, the Advanced Photon Source at Argonne National Laboratory is a national synchrotron-radiation light source research facility that utilizes thermionic RF guns. However, these existing thermionic guns are bulky, difficult to handle and install, easily detuned, very sensitive to thermal expansion, and due for a major upgrade and replacement. In this paper, we present the design of a new, more stable, and reliable gun with optimized electromagnetic performance, improved thermal engineering, and a more robust cathode mounting technique, which is a critical step to improve the performance of existing and future light sources, industrial accelerators, and electron beam-driven THz sources. We will also present a fabricated gun prototype and show results of high-power and beam tests.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031921, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851079

ABSTRACT

We analyze the dynamics of rotary biomotors within a simple nanoelectromechanical model, consisting of a stator part and a ring-shaped rotor having 12 proton-binding sites. This model is closely related to the membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0 motor, even though our analysis is applicable to the bacterial flagellar motor.


Subject(s)
Biophysics/methods , Electrochemistry/methods , Proton-Translocating ATPases/chemistry , Adenosine Triphosphate/chemistry , Cell Membrane/metabolism , Cytoplasm/metabolism , Escherichia coli/metabolism , Flagella/metabolism , Hydrolysis , Models, Biological , Molecular Motor Proteins/chemistry , Periplasm/metabolism , Protons , Rotation , Torque
4.
Phys Rev Lett ; 96(4): 047006, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16486877

ABSTRACT

We present the first experimental results on a device with more than two superconducting qubits. The circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is characterized using low-frequency impedance measurement with a superconducting tank circuit coupled to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.

5.
Phys Rev Lett ; 93(3): 037003, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323858

ABSTRACT

We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current-voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.

6.
Phys Rev Lett ; 92(1): 017001, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14754010

ABSTRACT

It is usually argued that the presence of gapless quasiparticle excitations at the nodes of the d-wave superconducting gap should strongly decohere the quantum states of a d-wave qubit, making quantum effects practically unobservable. Using a self-consistent linear response nonequilibrium quasiclassical formalism, we show that this is not necessarily true. We find quasiparticle conductance of a d-wave grain boundary junction to be strongly phase dependent. Midgap states as well as nodal quasiparticles contribute to the conductance and therefore decoherence. Quantum behavior is estimated to be detectable in a qubit containing a d-wave junction with appropriate parameters.

7.
Phys Rev Lett ; 91(9): 097906, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-14525214

ABSTRACT

Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.

SELECTION OF CITATIONS
SEARCH DETAIL
...