Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-1): 054202, 2024 May.
Article in English | MEDLINE | ID: mdl-38907462

ABSTRACT

Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles. The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced by Munyaev et al. [Phys. Rev. Lett. 130, 107201 (2023)0031-900710.1103/PhysRevLett.130.107201], where we explored the surprising prevalence of such states in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our analysis to understand the mechanisms responsible for destroying the cyclops' states and inducing dynamical patterns called breathing and switching cyclops states. We first analytically study the existence and stability of cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks, breathing and switching cyclops states promise to strongly manifest in other physical and biological networks, including coupled theta neurons.

2.
Phys Rev Lett ; 132(10): 107401, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518325

ABSTRACT

We consider a population of globally coupled oscillators in which phase shifts in the coupling are random. We show that in the maximally disordered case, where the pairwise shifts are independent identically distributed random variables, the dynamics of a large population reduces to one without randomness in the shifts but with an effective coupling function, which is a convolution of the original coupling function with the distribution of the phase shifts. This result is valid for noisy oscillators and/or in the presence of a distribution of natural frequencies. We argue also, using the property of global asymptotic stability, that this reduction is valid in a partially disordered case, where random phase shifts are attributed to the forced units only. However, the reduction to an effective coupling in the partially disordered noise-free situation may fail if the coupling function is complex enough to ensure the multistability of locked states.

3.
Phys Rev Lett ; 130(10): 107201, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962033

ABSTRACT

Repulsive oscillator networks can exhibit multiple cooperative rhythms, including chimera and cluster splay states. Yet, understanding which rhythm prevails remains challenging. Here, we address this fundamental question in the context of Kuramoto-Sakaguchi networks of rotators with higher-order Fourier modes in the coupling. Through analysis and numerics, we show that three-cluster splay states with two distinct coherent clusters and a solitary oscillator are the prevalent rhythms in networks with an odd number of units. We denote such tripod patterns cyclops states with the solitary oscillator reminiscent of the Cyclops' eye. As their mythological counterparts, the cyclops states are giants that dominate the system's phase space in weakly repulsive networks with first-order coupling. Astonishingly, the addition of the second or third harmonics to the Kuramoto coupling function makes the cyclops states global attractors practically across the full range of coupling's repulsion. Beyond the Kuramoto oscillators, we show that this effect is robustly present in networks of canonical theta neurons with adaptive coupling. At a more general level, our results suggest clues for finding dominant rhythms in repulsive physical and biological networks.

4.
Phys Rev E ; 105(2-1): 024203, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291064

ABSTRACT

Solitary states emerge in oscillator networks when one oscillator separates from the fully synchronized cluster and oscillates with a different frequency. Such chimera-type patterns with an incoherent state formed by a single oscillator were observed in various oscillator networks; however, there is still a lack of understanding of how such states can stably appear. Here, we study the stability of solitary states in Kuramoto networks of identical two-dimensional phase oscillators with inertia and a phase-lagged coupling. The presence of inertia can induce rotatory dynamics of the phase difference between the solitary oscillator and the coherent cluster. We derive asymptotic stability conditions for such a solitary state as a function of inertia, network size, and phase lag that may yield either attractive or repulsive coupling. Counterintuitively, our analysis demonstrates that (1) increasing the size of the coherent cluster can promote the stability of the solitary state in the attractive coupling case and (2) the solitary state can be stable in small-size networks with all repulsive coupling. We also discuss the implications of our stability analysis for the emergence of rotatory chimeras.

5.
Chaos ; 31(6): 063106, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241320

ABSTRACT

The study of deterministic chaos continues to be one of the important problems in the field of nonlinear dynamics. Interest in the study of chaos exists both in low-dimensional dynamical systems and in large ensembles of coupled oscillators. In this paper, we study the emergence of chaos in chains of locally coupled identical pendulums with constant torque. The study of the scenarios of the emergence (disappearance) and properties of chaos is done as a result of changes in (i) the individual properties of elements due to the influence of dissipation in this problem and (ii) the properties of the entire ensemble under consideration, determined by the number of interacting elements and the strength of the connection between them. It is shown that an increase of dissipation in an ensemble with a fixed coupling force and a number of elements can lead to the appearance of chaos as a result of a cascade of period-doubling bifurcations of periodic rotational motions or as a result of invariant tori destruction bifurcations. Chaos and hyperchaos can occur in an ensemble by adding or excluding one or more elements. Moreover, chaos arises hard since in this case, the control parameter is discrete. The influence of the coupling strength on the occurrence of chaos is specific. The appearance of chaos occurs with small and intermediate coupling and is caused by the overlap of the existence of various out-of-phase rotational mode regions. The boundaries of these areas are determined analytically and confirmed in a numerical experiment. Chaotic regimes in the chain do not exist if the coupling strength is strong enough. The dimension of an observed hyperchaotic regime strongly depends on the number of coupled elements.

6.
Phys Rev E ; 102(4-1): 042218, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212667

ABSTRACT

We study how a chimera state in a one-dimensional medium of nonlocally coupled oscillators responds to a homogeneous in space periodic in time external force. On a macroscopic level, where a chimera can be considered as an oscillating object, forcing leads to entrainment of the chimera's basic frequency inside an Arnold tongue. On a mesoscopic level, where a chimera can be viewed as an inhomogeneous, stationary, or nonstationary pattern, strong forcing can lead to regularization of an unstationary chimera. On a microscopic level of the dynamics of individual oscillators, forcing outside of the Arnold tongue leads to a multiplateau state with nontrivial locking properties.

7.
Chaos ; 29(3): 033109, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927845

ABSTRACT

This article studies the rotational dynamics of three identical coupled pendulums. There exist two parameter areas where the in-phase rotational motion is unstable and out-of-phase rotations are realized. Asymptotic theory is developed that allows us to analytically identify borders of instability areas of in-phase rotation motion. It is shown that out-of-phase rotations are the result of the parametric instability of in-phase motion. Complex out-of-phase rotations are numerically found and their stability and bifurcations are defined. It is demonstrated that the emergence of chaotic dynamics happens due to the period doubling bifurcation cascade. The detailed scenario of symmetry breaking is presented. The development of chaotic dynamics leads to the origin of two chaotic attractors of different types. The first one is characterized by the different phases of all pendulums. In the second case, the phases of the two pendulums are equal, and the phase of the third one is different. This regime can be interpreted as a drum-head mode in star-networks. It may also indicate the occurrence of chimera states in chains with a greater number of nearest-neighbour interacting elements and in analogical systems with global coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...