Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 681: 115328, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37722524

ABSTRACT

ZnO nanoparticles (NPs) with a flower-like morphology, synthesized by an affordable colloidal route using an aqueous fungi extract of Ganoderma lucidum as a reducing agent and stabilizer, are investigated as SERS-substrate. Each "flower" has large effective surface that is preserved at packing particles into a dense film and thus exhibits an advantageous property for SERS and similar sensing applications. The mycoextract used in our low-cost and green synthesis as surface stabilizer allows subsequent deposition of metal NPs or layers. One type of SERS substrates studied here was ZnO NPs decorated in situ in the solution by Ag NPs, another type was prepared by thermally evaporating Ag layer on the ZnO NP film on a substrate. A huge difference in the enhancement of the same analyte in the solution and in the dried form is found and discussed. Detection down to 10-7 M of standard dye analytes such as rhodamine 6G and methylene blue was achieved without additional optimization of the SERS substrates. The observed SERS-activity demonstrate the potential of both the free-standing flower-like ZnO NPs and thereof made dense films also for other applications where large surface area accessible for the external agent is crucial, such as catalysis or sensing.

2.
Naturwissenschaften ; 110(3): 15, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37071226

ABSTRACT

Metallic nanoparticles of different compositions have already found numerous applications in various branches of industry, agriculture, and medicine. Given the well-known antibacterial activity of Ag, silver nanoparticles (AgNPs) are constantly being investigated for their promising ability to fight antibiotic-resistant pathogens. A promising candidate for AgNPs biosynthesis is chili pepper Capsicum annuum, cultivated worldwide and known for accumulating significant amounts of active substances. Phytochemical screening of aqueous extract of C. annuum pericarps demonstrated accumulation of 4.38 mg/g DW of total capsaicinoids, 14.56 mg GAE/g DW of total phenolic compounds, 1.67 mg QE/g DW of total flavonoids, and 1.03 mg CAE/g DW of total phenolic acids. All determined aromatic compounds carry various active functional groups, which effectively participate in the biosynthesis of AgNPs and are characterized by high antioxidant potential. Therefore, the present research focused on the facile, quick, and effective procedure for the biosynthesis of AgNPs, which were analyzed for their morphology such as shape and size through UV-visible, Fourier-transform infrared spectroscopy (FTIR) assays, and scanning electron microscopy. We found that the AgNPs biosynthesis resulted in changes in FTIR spectra, depicting the rearrangement of numerous functional groups, while the nanoparticles themselves were shown to be stable, spherical, 10-17 nm in size. Also we investigated the antibacterial properties of biosynthesized AgNPs, obtained with C. annuum fruit extracts, against a common phytopathogen Clavibacter michiganensis subsp. michiganensis. As was shown by zone inhibition assay, AgNPs showed dose-dependent 5.13-6.44 cm antibacterial activity, greatly exceeding the 4.98 cm inhibition area, produced by the precursor salt, AgNO3.


Subject(s)
Capsicum , Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
RSC Adv ; 13(1): 756-763, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36683769

ABSTRACT

Fungi produce and excrete various proteins, enzymes, polysaccharides, and secondary metabolites, which may be used as media for the "green" synthesis of metal and semiconductor nanoparticles (NPs). ZnO NPs with a flower-like morphology were synthesized by an affordable colloidal route, using an aqueous extract of Ganoderma lucidum as a reducing agent and stabilizer. Each individual "flower" has a large effective surface, which is preserved when the particles are close packed into a dense film, which is advantageous for numerous applications. The phonon Raman spectrum and X-ray diffraction (XRD) pattern prove the high crystallinity of the NPs, with the distinct pattern of a hexagonal (wurtzite) lattice, negligible residual stress, and a crystallite size of 12-14 nm determined from the XRD. The photoluminescence (PL) spectrum of the as-synthesized ZnO NPs contains a structured defect-related feature in the violet-blue range, while the green PL, common for nanostructures synthesized by "green" routes, is very weak. By applying dimethylsulfoxide as an additional passivating agent, the excitonic (UV) PL band was activated without enhancement of the defect-related features. Ag NP-decorated ZnO flowers were synthesized by subsequent silver reduction by pepper extract. The ZnO/Ag NPs exhibited efficient surface-enhanced Raman scattering (SERS) of a standard dye analyte, rhodamine 6G, ensuring the feasibility of other applications that require close contact of ZnO/Ag to other nanostructures or molecules to realize the energy of the charge transfer.

5.
Nanoscale Res Lett ; 11(1): 476, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27783378

ABSTRACT

The use of colloidal solutions of metals as micronutrients enhances plant resistance to unfavorable environmental conditions and ensures high yields of food crops. The purpose of the study was a comparative evaluation of presowing treatment with nanomolybdenum and microbiological preparation impact upon the development of adaptive responses in chickpea plants. Oxidative processes did not develop in all variants of the experiment but in variants treated with microbial preparation, and joint action of microbial and nanopreparations even declined, as evidenced by the reduction of thiobarbituric acid reactive substances in photosynthetic tissues by 15 %. The activity of superoxide dismutase increased (by 15 %) in variant "nanomolybdenum" and joint action "microbial + nanomolybdenum," but it decreased by 20 % in variants with microbial preparation treatment. The same dependence was observed in changes of catalase activity. Antioxidant status factor, which takes into account the ratio of antioxidant to pro-oxidant, was the highest in variants with joint action of microbial preparation and nanomolybdenum (0.7), the lowest in variants with microbial treatment only (0.1). Thus, the results show that the action of nanoparticles of molybdenum activated antioxidant enzymes and decreased oxidative processes, thus promoting adaptation of plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...