Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 71: 105363, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125961

ABSTRACT

We studied the effect of ultrasonic activation of brine (3%) during salting on the degree of stability of colour parameters of pork with normal (NOR) and abnormal course of autolysis in the CIE Lab colour space. The mechanism of stabilisation of the colour of meat is attributed to donor-acceptor bonds of metmyoglobin (MetMb). The accumulation of excessive number of free electrons in the medium are capable of activating MetMb. This reduces the activity of meat, when the native participants of the metmyoglobin reductase system and their own antioxidant systems of meat are depleted. Based on the additive calculation of deviations (increase / decrease) by the coordinates L*, a*, b* in the CIE Lab system, and the total colour difference (ΔE) in control and experimental samples, recommendations were developed. To optimize the colour characteristics of all types of meat, both on the surface and in the thickness of the meat, the preliminary activation of a 3% brine in a low-frequency submersible ultrasonic unit is recommended. Moreover, preliminary cavitation activation of a 3% is more preferable to stabilise the colour of PSE - meat (pale, soft, exudative (watery),) brine in a flow-through installation.


Subject(s)
Food Handling/methods , Muscle, Skeletal/chemistry , Myoglobin/chemistry , Pork Meat/analysis , Ultrasonic Waves , Color , Food Quality , Protein Stability
2.
J Phys Chem B ; 121(11): 2400-2406, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28252973

ABSTRACT

The rapidly developing field of bionanotechnology requires detailed knowledge of the mechanisms of interaction between inorganic matter and biomolecules. Under conditions different from those in an aqueous solution, however, the chemistry of these systems is elusive and may differ dramatically from their interactions in vitro and in vivo. Here, we report for the first time a photoemission study of a metal silver-DNA interface, formed in vacuo, in comparison with DNA-Ag+ and fluorescent DNA-Ag complexes formed in solution. The high-resolution photoelectron spectra reveal that in vacuo silver atoms interact mainly with oxygen atoms of the phosphodiester bond and deoxyribose in DNA, in contrast to the behavior of silver ions, which interact preferentially with the nitrogen atoms of the bases. This offers new insight into the mechanism of DNA metallization, which is of importance in creating metal-bio interfaces for nanotechnology applications.


Subject(s)
Cations, Monovalent/chemistry , DNA/chemistry , Silver Nitrate/chemistry , Silver/chemistry , Fluorescence , Nitrogen/chemistry , Oxygen/chemistry , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...