Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 19(1): 3, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38217061

ABSTRACT

BACKGROUND: Base Mine Lake (BML) is the first full-scale end pit lake for the oil sands mining industry in Canada. BML sequesters oil sands tailings under a freshwater cap and is intended to develop into a functional ecosystem that can be integrated into the local watershed. The first stage of successful reclamation requires the development of a phytoplankton community supporting a typical boreal lake food web. To assess the diversity and dynamics of the phytoplankton community in BML at this reclamation stage and to set a baseline for future monitoring, we examined the phytoplankton community in BML from 2016 through 2021 using molecular methods (targeting the 23S, 18S, and 16S rRNA genes) and microscopic methods. Nearby water bodies were used as controls for a freshwater environment and an active tailings pond. RESULTS: The phytoplankton community was made up of diverse bacteria and eukaryotes typical of a boreal lake. Microscopy and molecular data both identified a phytoplankton community comparable at the phylum level to that of natural boreal lakes, dominated by Chlorophyta, Cryptophyta, and Cyanophyta, with some Bacillariophyta, Ochrophyta, and Euglenophyta. Although many of the same genera were prominent in both BML and the control freshwater reservoir, there were differences at the species or ASV level. Total diversity in BML was also consistently lower than the control freshwater site, but consistently higher than the control tailings pond. The phytoplankton community composition in BML changed over the 5-year study period. Some taxa present in 2016-2019 (e.g., Choricystis) were no longer detected in 2021, while some dinophytes and haptophytes became detectable in small quantities starting in 2019-2021. Different quantification methods (qPCR analysis of 23S rRNA genes, and microscopic estimates of populations and total biomass) did not show a consistent directional trend in total phytoplankton over the 5-year study, nor was there any consistent increase in phytoplankton species diversity. The 5-year period was likely an insufficient time frame for detecting community trends, as phytoplankton communities are highly variable at the genus and species level. CONCLUSIONS: BML supports a phytoplankton community composition somewhat unique from control sites (active tailings and freshwater lake) and is still changing over time. However, the most abundant genera are typical of natural boreal lakes and have the potential to support a complex aquatic food web, with many of its identified major phytoplankton constituents known to be primary producers in boreal lake environments.

2.
mSystems ; 7(1): e0099121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35166562

ABSTRACT

Microbial community diversity is often correlated with physical environmental stresses like acidity, salinity, and temperature. For example, species diversity usually declines with increasing temperature above 20°C. However, few studies have examined whether the genetic functional diversity of community metagenomes varies in a similar way as species diversity along stress gradients. Here, we investigated bacterial communities in thermal spring sediments ranging from 21 to 88°C, representing communities of 330 to 3,800 bacterial and archaeal species based on 16S rRNA gene amplicon analysis. Metagenomes were sequenced, and Pfam abundances were used as a proxy for metagenomic functional diversity. Significant decreases in both species diversity and Pfam diversity were observed with increasing temperatures. The relationship between Pfam diversity and species diversity followed a power function with the steepest slopes in the high-temperature, low-diversity region of the gradient. Species additions to simple thermophilic communities added many new Pfams, while species additions to complex mesophilic communities added relatively fewer new Pfams, indicating that species diversity does not approach saturation as rapidly as Pfam diversity does. Many Pfams appeared to have distinct temperature ceilings of 60 to 80°C. This study suggests that temperature stress limits both taxonomic and functional diversity of microbial communities, but in a quantitatively different manner. Lower functional diversity at higher temperatures is probably due to two factors, including (i) the absence of many enzymes not adapted to thermophilic conditions, and (ii) the fact that high-temperature communities are comprised of fewer species with smaller average genomes and, therefore, contain fewer rare functions. IMPORTANCE Only recently have microbial ecologists begun to assess quantitatively how microbial species diversity correlates with environmental factors like pH, temperature, and salinity. However, still, very few studies have examined how the number of distinct biochemical functions of microbial communities, termed functional diversity, varies with the same environmental factors. Our study examined 18 microbial communities sampled across a wide temperature gradient and found that increasing temperature reduced both species and functional diversity, but in different ways. Initially, functional diversity increased sharply with increasing species diversity but eventually plateaued, following a power function. This pattern has been previously predicted in theoretical models, but our study validates this predicted power function with field metagenomic data. This study also presents a unique overview of the distribution of metabolic functions along a temperature gradient, demonstrating that many functions have temperature "ceilings" above which they are no longer found.


Subject(s)
Bacteria , Microbiota , Temperature , RNA, Ribosomal, 16S/genetics , Archaea
3.
Appl Environ Microbiol ; 88(3): e0145521, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818104

ABSTRACT

Base Mine Lake (BML) is the first full-scale demonstration end pit lake for the oil sands mining industry in Canada. We examined aerobic methanotrophic bacteria over all seasons for 5 years in this dimictic lake. Methanotrophs comprised up to 58% of all bacterial reads in 16S rRNA gene amplicon sequencing analyses (median 2.8%), and up to 2.7 × 104 cells mL-1 of water (median 0.5 × 103) based on qPCR of pmoA genes. Methanotrophic activity and populations in the lake water were highest during fall turnover and remained high through the winter ice-covered period into spring turnover. They declined during summer stratification, especially in the epilimnion. Three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus) cycled seasonally, based on both relative and absolute abundance measurements. Methylobacter and Methylovulum populations peaked in winter/spring, when methane oxidation activity was psychrophilic. Methyloparacoccus populations increased in the water column through summer and fall, when methane oxidation was mesophilic, and also predominated in the underlying tailings sediment. Other, less abundant genera grew primarily during summer, possibly due to distinct CH4/O2 microniches created during thermal stratification. These data are consistent with temporal and spatial niche differentiation based on temperature, CH4 and O2. This pit lake displays methane cycling and methanotroph population dynamics similar to natural boreal lakes. IMPORTANCE The study examined methanotrophic bacteria in an industrial end pit lake, combining molecular DNA methods (both quantitative and descriptive) with biogeochemical measurements. The lake was sampled over 5 years, in all four seasons, as often as weekly, and included sub-ice samples. The resulting multiseason and multiyear data set is unique in its size and intensity, and allowed us to document clear and consistent seasonal patterns of growth and decline of three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus). Laboratory experiments suggested that one major control of this succession was niche partitioning based on temperature. The study helps to understand microbial dynamics in engineered end pit lakes, but we propose that the dynamics are typical of boreal stratified lakes and widely applicable in microbial ecology and limnology. Methane-oxidizing bacteria are important model organisms in microbial ecology and have implications for global climate change.


Subject(s)
Lakes , Oil and Gas Fields , Bacteria , Lakes/microbiology , Methane , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons
4.
Int J Syst Evol Microbiol ; 70(4): 2499-2508, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32559826

ABSTRACT

An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0-3.3 µm in length and 1.0-1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and Methylomicrobium were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class Gammaproteobacteria and family Methylococcaceae, most closely related to members of the genera Methylomicrobium and Methylobacter (95.0-97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA-DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.


Subject(s)
Methylococcaceae/classification , Oil and Gas Fields/microbiology , Phylogeny , Ponds/microbiology , Alberta , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Methane/metabolism , Methanol/metabolism , Methylococcaceae/isolation & purification , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
5.
Microorganisms ; 6(1)2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29509697

ABSTRACT

Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferulastellata is an obligate methanotroph, while Methylocellasilvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferulastellata and Methylocellasilvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocellasilvetris; (2) Growth on methane alone upregulated the mmo promoter of Methylocellasilvetris in its native background but not in the obligate methanotroph Methyloferulastellata; (3) The mmo promoter of Methyloferulastellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocellasilvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocellasilvetris compared to the obligate methanotroph Methyloferulastellata.

6.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067976

ABSTRACT

Methylohalobius crimeensis strain 10Ki is a moderately halophilic aerobic methanotroph isolated from a hypersaline lake in the Crimean Peninsula, Ukraine. This organism has the highest salt tolerance of any cultured methanotroph. Here, we present a draft genome sequence of this bacterium.

7.
Genome Announc ; 3(2)2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25745010

ABSTRACT

Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium.

8.
Environ Microbiol ; 16(6): 1867-78, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24650084

ABSTRACT

Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments.


Subject(s)
Hot Springs/microbiology , Microbiota/genetics , Verrucomicrobia/genetics , Water Microbiology , Bacterial Proteins/genetics , Genes, Bacterial , Hydrogen-Ion Concentration , Methane/metabolism , Oxygenases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Verrucomicrobia/enzymology
9.
ISME J ; 8(2): 369-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23985741

ABSTRACT

The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy.


Subject(s)
Beijerinckiaceae/classification , Beijerinckiaceae/genetics , Genome, Bacterial/genetics , Genomics , Phylogeny , Beijerinckiaceae/enzymology , Gene Transfer, Horizontal/genetics , Genome , Membrane Transport Proteins/genetics , Metabolic Networks and Pathways , Methane/metabolism , Oxygenases/genetics
10.
Sensors (Basel) ; 9(6): 4272-85, 2009.
Article in English | MEDLINE | ID: mdl-22408526

ABSTRACT

The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR) at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consisting of a response regulator, CorR, the histidine protein kinase CorS, and a third component, termed CorP. We analyzed at transcriptional and translational levels the expression of corS and the cma operon involved in COR biosynthesis after a temperature downshift from 28 to 18 °C. Expression of cma was induced within 20 min and increased steadily whereas corS expression was only slightly temperature-dependent. Accumulation of CmaB correlated with accumulation of cma mRNA. However, cma transcription was suppressed by inhibition of de novo protein biosynthesis. A transcriptional fusion of the cma promoter to a promoterless egfp gene was used to monitor the cma expression in vitro and in planta. A steady induction of cma::egfp by temperature downshift was observed in both environments. The results indicate that PG4180 responds to a temperature decrease with COR gene expression. However, COR gene expression and protein biosynthesis increased steadily, possibly reflecting adaptation to long-term rather than rapid temperature changes.

11.
Microbiology (Reading) ; 154(Pt 9): 2700-2708, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18757803

ABSTRACT

Two closely related phytopathogenic bacterial strains, Pseudomonas syringae pv. glycinea PG4180 and P. syringae pv. tomato DC3000, produce the chlorosis-inducing phytotoxin coronatine (COR) in a remarkably divergent manner. PG4180 produces COR at the virulence-promoting temperature of 18 degrees C, but not at 28 degrees C. In contrast, temperature has no effect on COR synthesis in DC3000. A modified two-component system consisting of the histidine protein kinase (HPK), CorS, the response regulator (RR), CorR, and a third component, CorP, governs COR biosynthesis in both strains. A plasmid-based component and domain swapping approach was used to introduce different combinations of RRs, HPKs and hybrid HPKs into corS mutants of both strains. Subsequently, expression levels of the COR biosynthetic cma operon were determined using RNA dot-blot analysis, suggesting that CorRSP of PG4180 mediates a thermoresponsive phenotype dependent on the genomic background of each strain. The reciprocal experiment demonstrated a loss of temperature dependence in the corS mutant of PG4180. The presence of corR from PG4180 led to more pronounced cma expression in DC3000 and was associated with thermoresponsiveness, while corS of PG4180 did not mediate a temperature-dependent phenotype in the DC3000 mutant containing native corR and corP. These findings were substantiated by RT-PCR experiments. The C-terminal domain of CorS of PG4180 mediated thermosensing, while the N terminus did not respond to temperature changes, suggesting cytosolic perception of the temperature signal.


Subject(s)
Amino Acids/biosynthesis , Bacterial Toxins/biosynthesis , Gene Expression Regulation, Bacterial , Pseudomonas syringae/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Genes, Bacterial , Genetic Complementation Test , Histidine Kinase , Indenes , Mutagenesis , Operon , Phenotype , Plasmids , Protein Kinases/metabolism , Protein Structure, Tertiary , Pseudomonas syringae/genetics , RNA, Bacterial/genetics , Reverse Transcriptase Polymerase Chain Reaction , Temperature , Trans-Activators/metabolism
12.
Biol Direct ; 3: 26, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18593465

ABSTRACT

BACKGROUND: The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. RESULTS: We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. CONCLUSION: The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. REVIEWERS: This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.


Subject(s)
Chlamydiaceae/genetics , Chlamydiaceae/isolation & purification , Comparative Genomic Hybridization , Genome, Bacterial , Base Sequence , Chlamydiaceae/growth & development , Chlamydiaceae/metabolism , Hydrogen-Ion Concentration , Methane/metabolism
13.
Environ Microbiol ; 10(8): 2030-41, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18422642

ABSTRACT

We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi, Proteobacteria and candidate division OP10. Aerobic, thermophilic, organotrophic bacteria were isolated using cultivation protocols that involved extended incubation times, low-pH media and gellan as a replacement gelling agent to agar. Isolates represented previously uncultured species, genera, classes, and even a new phylum of bacteria. They included members of the commonly cultivated phyla Proteobacteria, Firmicutes, Thermus/Deinococcus, Actinobacteria and Bacteroidetes, as well as more-difficult-to-cultivate groups. Isolates possessing < 85% 16S rRNA gene sequence identity to any cultivated species were obtained from the phyla Acidobacteria, Chloroflexi and the previously uncultured candidate division OP10. Several isolates were prevalent in 16S rRNA gene clone libraries constructed directly from the soils. A key factor facilitating isolation was the use of gellan-solidified plates, where the gellan itself served as an energy source for certain bacteria. The results indicate that geothermal soils are a rich potential source of novel bacteria, and that relatively simple cultivation techniques are practical for isolating bacteria from these habitats.


Subject(s)
Bacteria , Chloroflexi/isolation & purification , Soil Microbiology , Bacteria/classification , Bacteria/isolation & purification , New Zealand , Phylogeny , RNA, Ribosomal, 16S , Volcanic Eruptions
14.
FEMS Microbiol Lett ; 283(2): 231-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18429999

ABSTRACT

Several plant pathogenic bacteria belonging to the species Pseudomonas syringae produce the phytotoxin coronatine to enhance their virulence. Pseudomonas syringae pv. glycinea PG4180 synthesizes coronatine at the virulence-promoting temperature of 18 degrees C, but not at 28 degrees C, its optimal growth temperature. In contrast, temperature has virtually no effect on coronatine synthesis in P. syringae pv. tomato strain DC3000. A modified two-component system controlling coronatine synthesis and consisting of the histidine protein kinase (HPK), CorS, the response regulator, CorR, and a third essential component, CorP, had been identified previously in both strains. CorS had been identified previously as a potential thermo-sensor. Comparison of the amino acid sequences of the HPKs from the two organisms revealed distinct differences. Site-directed mutagenesis of CorS from PG4180 was used to identify amino acyl residues potentially important for temperature signal perception. Point mutations and combinations of these were introduced into corS of PG4180 to generate corS variants with increased similarities to the respective allele from strain DC3000. These mutations resulted in either loss of activity, increase of thermoresponsiveness, or had no effect on CorS activity. Although none of the introduced mutations resulted in a clear conversion of CorS activity from thermo-responsive to temperature-independent, amino acyl residues important for temperature-dependent CorS activity and coronatine biosynthesis were identified.


Subject(s)
Amino Acids/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , Pseudomonas syringae/enzymology , Pseudomonas syringae/genetics , Amino Acid Sequence , Amino Acid Substitution , Indenes , Models, Biological , Models, Molecular , Molecular Sequence Data , Point Mutation , Sequence Alignment , Signal Transduction , Temperature
15.
Nature ; 450(7171): 879-82, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18004300

ABSTRACT

Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0-2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Methane/metabolism , Acids/metabolism , Bacteria/enzymology , Bacteria/genetics , Geologic Sediments/microbiology , Hydrogen-Ion Concentration , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Oxygen/metabolism , Oxygenases/genetics , Partial Pressure , Phylogeny , RNA, Ribosomal, 16S/genetics , Temperature
16.
Methods Enzymol ; 423: 222-49, 2007.
Article in English | MEDLINE | ID: mdl-17609134

ABSTRACT

Two-component systems provide a means for bacteria to sense and adapt to environmental signals in order to survive in a continuously changing environment. Understanding of the mechanism by which these systems function is important in combating bacterial infections because many bacterial two-component systems are associated with virulence. The plant pathogenic bacterium Pseudomonas syringae pv. glycinea PG4180 synthesizes high levels of the phytotoxin coronatine at the virulence-promoting temperature of 18 degrees , but not at 28 degrees , the optimal growth temperature. Temperature-dependent coronatine biosynthesis is regulated by a modified two-component system, consisting of the response regulator, CorR, the histidine protein kinase CorS, and a third component, CorP. To elucidate the mechanism by which CorRSP functions, genetic, transcriptional, and biochemical analyses were applied, including in vitro and in planta reporter gene analysis, mRNA quantification, protein expression, mutagenesis, and membrane topology analysis. A combination of these techniques helped to elucidate, to a considerable extent, the temperature-sensing activity of CorS, which seems to act as a membrane-bound molecular thermometer.


Subject(s)
Cell Membrane/metabolism , Gene Expression Regulation, Bacterial , Protein Kinases/chemistry , Pseudomonas syringae/metabolism , Amino Acid Sequence , Bacteria/metabolism , Bacterial Proteins/chemistry , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , Gene Deletion , Green Fluorescent Proteins/metabolism , Histidine/metabolism , Histidine Kinase , Models, Genetic , Molecular Sequence Data , Multigene Family , Temperature , Trans-Activators/chemistry , Virulence
17.
Microbiology (Reading) ; 150(Pt 8): 2715-2726, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15289568

ABSTRACT

A modified two-component regulatory system consisting of two response regulators, CorR and CorP, and the histidine protein kinase CorS, regulates the thermoresponsive production of the phytotoxin coronatine (COR) in Pseudomonas syringae PG4180. COR is produced at the virulence-promoting temperature of 18 degrees C, but not at 28 degrees C, the optimal growth temperature of PG4180. Assuming that the highly hydrophobic N-terminus of CorS might be involved in temperature-signal perception, the membrane topology of CorS was determined using translational phoA and lacZ fusions, leading to a topological model for CorS with six transmembrane domains (TMDs). Interestingly, three PhoA fusions located downstream of the sixth TMD showed a thermoresponsive phenotype. Enzymic activity, immunoblot, and protease-sensitivity assays were performed to localize the CorS derivatives, to analyse the expression level of hybrid proteins and to examine the model. In-frame deletions of the last four, or all six TMDs gave rise to non-functional CorS. The results indicated that the transmembrane region is important for CorS to function as a temperature sensor, and that the membrane topology of CorS might be involved in signal perception.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Kinases/chemistry , Protein Kinases/genetics , Pseudomonas syringae/enzymology , Pseudomonas syringae/genetics , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Amino Acid Sequence , Artificial Gene Fusion , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial/genetics , Histidine Kinase , Lac Operon , Models, Molecular , Molecular Sequence Data , Phenotype , Protein Kinases/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Deletion , Signal Transduction , Temperature
18.
J Mol Microbiol Biotechnol ; 4(3): 191-6, 2002 May.
Article in English | MEDLINE | ID: mdl-11931546

ABSTRACT

The phytopathogen Pseudomonas syringae produces the phytotoxin coronatine (COR) as a major virulence factor. COR and its precursor, coronafacic acid, function as molecular mimics of the plant signaling molecule jasmonate. A 32.8-kb plasmid-borne gene cluster mediates COR biosynthesis, which is optimal at 18 degrees C and non-detectable at 28 degrees C, the optimal growth temperature for P. syringae. The thermoregulation is mediated at the transcriptional level by an unconventional two-component regulatory system consisting of a histidine protein kinase, CorS, and two transcriptional activators, CorR and CorP. Dissection of this regulatory triad revealed that CorR binds to its target sequences in a thermoresponsive manner and that its DNA-binding activity is controlled by CorS. A Preliminary model for thermo-sensing by CorS is proposed based on its membrane topology and the analysis of translational fusions of CorS to reporter enzymes at different temperatures. CorP lacks a typical helix-turn-helix motif but possibly functions as a modulator of CorR or CorS activity. The thermoregulation of COR biosynthetic genes is widespread among various COR-producing P. syringae strains. Post-translational processes also contribute to the thermo-responsiveness of COR production. Additionally, COR synthesis in P. syringae is influenced by nutrient availability, rpoN encoding the alternative sigma factor sigma54, and HrpV, a negative regulator of hrp gene expression, suggesting a complex regulatory network governing phytotoxin synthesis.


Subject(s)
Amino Acids/biosynthesis , Bacterial Proteins/genetics , Bacterial Toxins/biosynthesis , Gene Expression Regulation, Bacterial , Pseudomonas/metabolism , Trans-Activators , Amino Acids/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genes, Bacterial , Indenes , Multigene Family , Plant Diseases/microbiology , Pseudomonas/genetics , Signal Transduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...