Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557929

ABSTRACT

Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostate/pathology , Androgen Antagonists , Antigens, Surface , Androstenes/pharmacology
2.
Chem Biol Interact ; 364: 110056, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35872044

ABSTRACT

In recent decades, indolocarbazole glycosides containing sugar moieties have attracted attention due to their diverse anti-tumor activities. In the present study, a series of new indolo [2,3-a]pyrrolo [3,4-c]carbazole derivatives were synthesized for the first time. First of all, we have shown that compound 6e (LCS1269) had the most pronounced effect on inhibiting tumor growth in the transferable solid and non-solid murine tumors as compared with other synthesized indolocarbazole derivatives. The results of the in vivo nude mice xenoraft study also confirmed that LCS1269 treatment strongly suppressed the growth of human colon cancer SW620 xenografts. It is important to note that the antiproliferative activity of LCS1269 against three human cancer cell lines (MCF-7, HCT-116 and A549) was considerably higher than that against the non-tumor cell lines (immortalized breast cells and normal embryonic fibroblasts). Furthermore, the treatment of MCF-7, HCT-116 and A549 cells with LCS1269 caused the statistically significant inhibition of anchorage-dependent and anchorage-independent colony formation. We further revealed that LCS1269 treatment of investigated human cancer cells resulted in the DNA damage and G2/M cell cycle arrest followed by the decrease of mitochondrial membrane potential with subsequent initiation of intrinsic apoptosis and the triggering of senescence via p53-dependent mechanisms. In addition, our western blotting findings and molecular docking data suppose that LCS1269 could at least partially attenuate cancer cells growth by modulation of AKT/mTOR/S6K and ERK signaling pathways. Therefore, we concluded that LCS1269 might be the promising compound for implementation and probable use in the clinical practice.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation , DNA Damage , Glycosides/pharmacology , Humans , MAP Kinase Signaling System , Mice , Mice, Nude , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Eur J Med Chem ; 227: 113936, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34717125

ABSTRACT

Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Prostate-Specific Antigen/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Docetaxel/chemical synthesis , Docetaxel/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred ICR , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Rabbits , Rats , Rats, Wistar , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 64(23): 17123-17145, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34797052

ABSTRACT

Prostate cancer is the second most common type of cancer among men. Its main method of treatment is chemotherapy, which has a wide range of side effects. One of the solutions to this challenge is targeted delivery to prostate cancer cells. Here we synthesized a novel small-molecule PSMA-targeted conjugate based on the monomethyl auristatin E. Its structure and conformational properties were investigated by NMR spectroscopy. Cytotoxicity, intracellular reactive oxygen species induction, and stability under liver microsomes and P450-cytochrome species were investigated for this conjugate. The conjugate demonstrated 77-85% tumor growth inhibition levels on 22Rv1 (PSMA (+)) xenografts, compared with a 37% inhibition level on PC-3 (PSMA (-)) xenografts, in a single dose of 0.3 mg/kg and a sufficiently high therapeutic index of 21. Acute, chronic, and subchronic toxicities and pharmacokinetics have shown that the synthesized conjugate is a promising potential agent for the chemotherapy of prostate cancer.


Subject(s)
Antigens, Surface/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Glutamate Carboxypeptidase II/chemistry , Oligopeptides/chemistry , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Humans , Male , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
5.
J Med Chem ; 64(8): 4532-4552, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33822606

ABSTRACT

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.


Subject(s)
Antigens, Surface/metabolism , Antineoplastic Agents/metabolism , Fluorescent Dyes/chemistry , Glutamate Carboxypeptidase II/metabolism , Ligands , Animals , Antigens, Surface/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Glutamate Carboxypeptidase II/chemistry , Humans , Male , Mice , Mice, Nude , Optical Imaging , Prostatic Neoplasms/drug therapy , Structure-Activity Relationship , Tissue Distribution , Transplantation, Heterologous
6.
Bioorg Chem ; 107: 104527, 2021 02.
Article in English | MEDLINE | ID: mdl-33317839

ABSTRACT

In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.


Subject(s)
Antineoplastic Agents/therapeutic use , Hydantoins/therapeutic use , Neoplasms/drug therapy , Pyrazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded/drug effects , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Hydantoins/chemical synthesis , Hydantoins/metabolism , Hydantoins/pharmacokinetics , Male , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Xenograft Model Antitumor Assays
7.
ChemMedChem ; 15(19): 1813-1825, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32715626

ABSTRACT

In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50 =0.78±0.01 µM), HT29 (IC50 =0.92±0.15 µM) and K562 (IC50 =47.25±1.24 µM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1 /G0 phase and decreased cell population in G2 /M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg-1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Structure-Activity Relationship
8.
Anticancer Agents Med Chem ; 17(3): 434-441, 2017.
Article in English | MEDLINE | ID: mdl-27141874

ABSTRACT

BACKGROUND: Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. OBJECTIVE: This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. METHOD: PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. RESULTS: Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. CONCLUSION: The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Carcinoma, Lewis Lung/drug therapy , Hydroxybutyrates/pharmacology , Paclitaxel/pharmacology , Polyesters/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Carcinoma, Lewis Lung/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydroxybutyrates/administration & dosage , Hydroxybutyrates/chemistry , Injections, Intraperitoneal , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Molecular Structure , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Particle Size , Polyesters/administration & dosage , Polyesters/chemistry , Prohibitins , Structure-Activity Relationship , Surface Properties , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...