Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34947637

ABSTRACT

This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm-1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95-97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95-98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).

2.
Glycobiology ; 31(5): 524-529, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33242091

ABSTRACT

We report the accomplishment of the first stage of the development of a novel manually curated database on glycosyltransferase (GT) activities, CSDB_GT. CSDB_GT (http://csdb.glycoscience.ru/gt.html) has been supplemented with GT activities from Saccharomyces cerevisiae. Now it provides the close-to-complete coverage on experimentally confirmed GTs from the three most studied model organisms from the three kingdoms: plantae (Arabidopsis thaliana, ca. 930 activities), bacteria (Escherichia coli, ca. 820 activities) and fungi (S. cerevisiae, ca. 270 activities).


Subject(s)
Arabidopsis/enzymology , Databases, Protein , Escherichia coli/enzymology , Glycosyltransferases/chemistry , Saccharomyces cerevisiae/enzymology , Glycosyltransferases/metabolism
3.
Inorg Chem ; 57(18): 11482-11491, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30160971

ABSTRACT

The reaction of Pd3(OOCMe)6 with indium(III) and gallium(III) acetates was studied to prepare new PdII-based heterometallic carboxylate complexes with group 13 metals. The heterometallic palladium(II)-indium(III) acetate-bridged complexes Pd(OOCMe)4In(OOCMe) (1) and Pd(OOCMe)4In(OOCMe)·MeCOOH (1a) were synthesized and structurally characterized with X-ray crystallography and extended X-ray absorption fine structure in the solid state and solution. A similar Pd-Ga heterometallic complex formed by the reaction of Pd3(OOCMe)6 with gallium(III) acetate in a dilute acetic acid solution, as evidenced by atmospheric pressure chemical ionization mass and UV-vis spectrometry, was unstable at higher concentrations and in the solid state. Complex 1 catalyzes the liquid-phase-selective phenylacetylene and styrene hydrogenation (1 atm of H2 at 20 °C) in acetic acid, ethyl acetate, and N, N-dimethylformamide solutions, while no Pd metal was formed until alkyne and alkene hydrogenation ceased.

SELECTION OF CITATIONS
SEARCH DETAIL
...