Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 20(28): 29854-66, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388812

ABSTRACT

To solve the pattern recognition problem, a method of synthesized phase objects is suggested. The essence of the suggested method is that synthesized phase objects are used instead of real amplitude objects. The former is object-dependent phase distributions calculated using the iterative Fourier-transform (IFT) algorithm. The method is experimentally studied with a Vander Lugt optical-digital 4F-correlator. We present the comparative analysis of recognition results using conventional and proposed methods, estimate the sensitivity of the latter to distortions of the structure of objects, and determine the applicability limits. It is demonstrated that the proposed method allows one: (а) to simplify the procedure of choice of recognition signs (criteria); (b) to obtain one-type δ-like recognition signals irrespective of the type of objects; (с) to improve signal-to-noise ratio (SNR) for correlation signals by 20 - 30 dB on average. The spatial separation of the Fourier-spectra of objects and optical noises of the correlator by means of the superposition of the phase grating on recognition objects at the recording of holographic filters and at the matched filtering has additionally improved SNR (>10 dB) for correlation signals. To introduce recognition objects in the correlator, we use a SLM LC-R 2500 device. Matched filters are recorded on a self-developing photopolymer.

2.
Nanotechnology ; 20(40): 405301, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19752504

ABSTRACT

A new approach to producing volume periodic polymer-metal nanoparticle structures is presented. Periodic distribution of Ag nanoparticles in a polymer film can be obtained by applying the holographic patterning in the UV or visible spectral range to the composite material comprising photocurable monomers, photoinitiators and a solution of silver nitrate in acetonitrile. Photopolymerization of the composite in the interference pattern provides formation of a highly efficient volume grating composed of periodic polymer regions and Ag precursor-containing regions. Subsequent homogeneous UV irradiation and/or thermo-treatment of the grating causes reduction of silver ions to Ag nanoparticles in the areas of the film containing the metal precursor. Spectroscopic measurements confirm the formation of the nanoparticles in the gratings. Transmission electron microscopy showed a regular spatial distribution of well-defined Ag nanoparticles in a polymer film with a periodicity governed by the geometry of holographic structuring. The average diameter of nanoparticles can be controlled by the wavelength and intensity of holographic exposure as well as the composite formulation. A possible mechanism of silver nanoparticle formation by free radicals as reducing agents is presented.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology/methods , Polymers/chemistry , Silver/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...