Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 148(22): 224505, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29907061

ABSTRACT

In this paper, the molecular dynamics of a series of ester derivatives of ibuprofen (IBU), in which the hydrogen atom from the hydroxyl group was substituted by the methyl, isopropyl, hexyl, and benzyl moieties, has been investigated using Broadband dielectric (BD), Nuclear magnetic resonance (NMR), and Raman spectroscopies. We found that except for benzyl IBU (Ben-IBU), an additional process (slow mode, SM) appears in dielectric spectra in all examined compounds. It is worth noting that this relaxation process was observed for the first time in non-modified IBU (a Debye relaxation). According to suggestions by Affouard and Correia [J. Phys. Chem. B. 114, 11397 (2010)] as well as further studies by Adrjanowicz et al. [J. Chem. Phys. 139, 111103 (2013)] on Met-IBU, it was attributed to synperiplanar-antiperiplanar conformational changes within the molecule. Herein, we have shown that with an increasing molecular weight of the substituent, the relaxation times of the SM become longer and its activation energy significantly increases. Moreover, this new relaxation mode was found to be broader than a simple Debye relaxation in Iso-IBU and Hex-IBU. Additional complementary NMR studies indicated that either there is a significant slowdown of the rotation around the O=C-O-R moiety or this kind of movement is completely suppressed in the case of Ben-IBU. Therefore, the SM is not observed in the dielectric loss spectra of this compound. Finally, we carried out isothermal experiments on the samples which have a different thermal history. Interestingly, it turned out that the relaxation times of the structural processes are slightly shorter with respect to those obtained from temperature dependent measurements. This effect was the most prominent in the case of Hex-IBU, while for Ben-IBU, it was not observed at all. Additional time-dependent measurements revealed the ongoing equilibration manifested by the continuous shift of the structural process, until it finally reached its equilibrium position. Further Raman investigations showed that this effect may be related to the rotational/conformational equilibration of the long hexyl chains. Our results are the first ones demonstrating that the structural process is sensitive to the conformational equilibration occurring in the specific highly viscous systems.

2.
Sci Rep ; 8(1): 5312, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593302

ABSTRACT

Intra- and intermolecular studies on the molten L-sorbose have been carried out at variable temperature conditions to determine the crosover temperature (T c ). In addition, isothermal time-dependent FTIR and Raman measurements were performed to probe the pace of mutarotation and activation energy of this reaction in the studied saccharide, which varied from 53-62 kJ/mol up to 177-192 kJ/mol below and above T c , respectively. To explain the change in activation barrier for the mutarotation a complementary analysis using difference FTIR spectra collected around T c = 365 K in the hydroxyl region has been done. It was found that the alteration of kinetic parameters and molecular dynamics around T c are strictly related to the variation in the strength of H-bonds which above T c are significantly weaken, increasing the freedom of rotation of functional groups and movement of individual molecules. That phenomenon most likely affects the proton transfer, underlying molecular mechanism of mutarotation, which may lead to the significant increase in activation barrier. The new insight into a molecular aspect of the mutarotation around T c has created an opportunity to better understanding the relationship between physics of condensed matter and the potential role of H-bonds dynamics on the progress of the chemical reaction in highly viscous systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...