Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 415(29-30): 7151-7160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804326

ABSTRACT

Flavonoids are a class of secondary plant metabolites with low molecular weights. Most flavonoids are highly polar and unsuitable for gas chromatographic analyses. Derivatization is commonly used to make them amenable to gas chromatography by altering their physicochemical properties. Although highly effective, derivatization techniques introduce extra preparation steps and often use hazardous chemicals. The aim of this study was to automate derivatization (specifically, silylation) by developing 3D printed microfluidic devices in which derivatization of flavonoids can occur. A microfluidic device was designed and 3D printed using clear polypropylene. Quercetin and other flavonoids (TED 13 and ZTF 1016) isolated from plant extracts were silylated with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) at room temperature both in batch and in continuous flow. All the samples were analyzed using Fourier transform infrared (FTIR) spectroscopy, gas chromatography combined with mass spectrometry (GC-MS), and high-resolution accurate mass spectrometry (HR-MS). Interestingly, the HR-MS results showed that the flow method was about 25 times more efficient than the batch method for quercetin samples. The TED 13 flavonoid was completely derivatized in the flow method compared to the batch method where the reaction was incomplete. Similar results were observed for ZTF 1016, where the flow method resulted in a four times derivatized compound, while the compound was only derivatized once in batch. In conclusion, 3D printed microfluidic devices have been developed and used to demonstrate a semi-automated, inexpensive, and more efficient natural product derivatization method based on continuous flow chemistry as an alternative to the traditional batch method.


Subject(s)
Flavonoids , Quercetin , Gas Chromatography-Mass Spectrometry/methods , Microfluidics , Printing, Three-Dimensional
2.
J Anal Methods Chem ; 2018: 8694579, 2018.
Article in English | MEDLINE | ID: mdl-29576885

ABSTRACT

Dicaffeoylquinic acids (diCQAs) are plant metabolites and undergo trans-cis-isomerization when exposed to UV irradiation. As such, diCQAs exist in both trans- and cis-configurations and amplify the already complex plant metabolome. However, analytical differentiation of these geometrical isomers using mass spectrometry (MS) approaches has proven to be extremely challenging. Exploring the chromatographic space to develop possible conditions that would aid in differentially separating and determining the elution order of these isomers is therefore imperative. In this study, simple chromatographic parameters, such as column chemistry (phenyl versus alkyl), mobile phase composition (methanol or acetonitrile), and column temperature, were investigated to aid in the separation of diCQA geometrical isomers. The high-performance liquid chromatography photodiode array (HPLC-PDA) chromatograms revealed four isomers post UV irradiation of diCQA authentic standards. The elution profile/order was seen to vary on different reverse-phase column chemistries (phenyl versus alkyl) using different mobile phase composition. Here, the elution profile/order on the phenyl-derived column matrices (with methanol as the mobile phase composition) was observed to be relatively reproducible as compared to the alkyl (C18) columns. Chromatographic resolution of diCQA geometrical isomers can be enhanced with an increase in column temperature. Lastly, the study highlights that chromatographic elution order/profile cannot be relied upon to fathom the complexity of isomeric plant metabolites.

3.
Molecules ; 22(8)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28749445

ABSTRACT

Vernonia fastigiata is a multi-purpose nutraceutical plant with interesting biological properties. However, very little is known about its phytochemical composition and, thus the need for its phytochemical characterization. In the current study, an environmentally friendly method, pressurized hot water extraction (PHWE), was used to extract metabolites from the leaves of V. fastigiata at various temperatures (50 °C, 100 °C, 150 °C and 200 °C). Ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-qTOF-MS) analysis in combination with chemometric methods, particularly principal component analysis (PCA) and liquid/gas chromatography mass spectrometry (XCMS) cloud plots, were used to descriptively visualize the data and identify significant metabolites extracted at various temperatures. A total of 25 different metabolites, including hydroxycinnamic acid derivatives, clovamide, deoxy-clovamide and flavonoids, were noted for the first time in this plant. Overall, an increase in extraction temperature resulted in an increase in metabolite extraction during PHWE. This study is the first scientific report on the phytochemical composition of V. fastigiata, providing insight into the components of the chemo-diversity of this important plant.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hot Temperature , Mass Spectrometry/methods , Metabolomics/methods , Phytochemicals/analysis , Pressure , Vernonia/chemistry , Coumaric Acids/chemistry , Glycosylation , Metabolome , Phytochemicals/chemistry , Principal Component Analysis , Quercetin/chemistry , Water
4.
Article in English | MEDLINE | ID: mdl-28364699

ABSTRACT

Resolving the chemo-diversity of plant extract samples is an essential step for in-depth analyses of natural products which often exhibit promising biological activities. One of the challenges in this endeavor has been the confident differentiation of geometrical isomers. In this study, we investigated these aspects in chromatography (column chemistry and mobile phase composition) and mass spectrometry settings with regards to better differentiation of geometrical isomers. A standard of a hydroxycinnamic acid (HCA) derivative, L-chicoric acid (L-CA) - a di-acylated caffeoyltartaric acid ester found in a number of plant families - was used. Geometrical isomers of L-CA were formed by exposing the compound to ultraviolet (UV) radiation, to mimic the natural environment. The high performance liquid chromatography photo-diode array (HPLC-PDA) and ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS) platforms were used to analyze the trans and cis geometrical isomers of L-CA. The HPLC-PDA results confirmed the generation of two cis geometrical isomers following UV exposure of the authentic trans-L-CA standard. Furthermore, the HPLC-PDA analyses demonstrated that the changes in both column chemistry (reverse-phase: C18, biphenyl, phenyl-hexyl and pentafluorophenyl propyl) and mobile phase composition (aqueous acetonitrile and aqueous methanol) affect the chromatographic elution profiles of the L-CA isomers. The MS results, on the other hand, revealed undisputed fragmentation differences between the geometrical isomers of L-CA. Thus, this study demonstrates that the identification of the L-CA isomers can be achieved more efficiently and confidently with good chromatography coupled to well-optimized mass spectrometry conditions, a requirement which has been proven impossible with other types of HCA derivatives. Moreover, differences in the binding modes of L-CA geometrical isomers to the HIV type 1 integrase enzyme were observed, suggesting a synergistic anti-HIV-1 activity of these isomers.


Subject(s)
Caffeic Acids/chemistry , HIV Integrase Inhibitors/chemistry , Mass Spectrometry/methods , Succinates/chemistry , Caffeic Acids/pharmacology , Chromatography, High Pressure Liquid/methods , HIV Infections/drug therapy , HIV Infections/virology , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/enzymology , Humans , Isomerism , Molecular Docking Simulation , Succinates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...