Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Food Res Int ; 184: 114249, 2024 May.
Article in English | MEDLINE | ID: mdl-38609227

ABSTRACT

Low temperature storage as an alternative to anti-sprouting chemicals in potato storage may induce reducing sugars (RS) accumulation (i.e. glucose and fructose) in potato tubers. This phenomenon is called "cold induced sweetening" (CIS) and occurs in certain varieties. CIS leads to a decrease in the organoleptic qualities and darkening of processed potato and the accumulation of toxic molecules such as acrylamide. To identify potato varieties suitable for storage at low temperatures, we screened six commercial processing varieties: Lady Claire (LC), Verdi, Kiebitz (KB), Pirol, Agria and Markies for their CIS characteristics and sprout-forming potential after storage at 4 °C and 8 °C. Our findings reveal that 4 °C storage allows for efficient sprout reduction in all six tested varieties for up to 4.5 months of storage. Three CIS-resistant varieties, namely Verdi, Lady Claire and Kiebitz, were identified as able to be stored for up to four months at 4 °C with limited increase in glucose content. Conversely, Pirol, Agria and Markies showed an increase in glucose content with a decrease in storage temperature and can be considered as CIS-susceptible varieties. After processing into crisps, the CIS-susceptible varieties displayed poor crisp color quality (brown to black color crisps) after storage for two months at 4 °C compared to the storage at 8 °C, whereas the CIS-resistant varieties had good crisp color quality (pale yellow color crisps) after storage at both 4 and 8 °C. Interestingly, the trends of total RS and/or glucose content in the CIS-resistant and in the CIS-susceptible varieties were correlated with the trends in Vacuolar Invertase (VInv) gene expression for most varieties, as well as with the trends in acrylamide content after processing. In addition, reconditioning of Markies variety after storage at 4 °C by gradually increasing the temperature to 15 °C resulted in a significant decrease of VInv transcript levels (reduction of 80 %), acrylamide content (reduction of 75 %) and glucose content when compared to a storage at 4 °C without reconditioning. Those results demonstrate that the reconditioning technique is a key factor for a sustainable potato storage and for improving the quality of processed potatoes.


Subject(s)
Solanum tuberosum , Humans , Cryopreservation , Cold Temperature , Acrylamide , Glucose , beta-Fructofuranosidase
3.
Food Funct ; 14(15): 7096-7108, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37458480

ABSTRACT

Table potatoes are important staple foods with a higher satiety index than rice or pasta, but also reach a higher glycemic index (GI), leading to contradictory dietary recommendations. Previous studies identified resistant starch (RS) content as primary criterium for the GI. Hence, the relevance of starch molecular properties for genotype specific RS formation was investigated. Six common table potato varieties were used to investigate the starch pasting and digestibility in whole tubers and their isolated starches. A Micro-Visco Amylograph was used to simulate the cooking process for isolated starches and determine their pasting curves. In vitro starch digestibility was determined for raw freeze-dried cooked tubers kept at 4 °C for up to 72 h and for isolated starches. Moreover, important molecular starch properties, including granule size distribution, molar mass distribution, amylose content and inter- and intra-molecular structures were determined. The results show substantial differences in starch digestibility and pasting characteristics among genotypes. Soraya starch showed small and low-branched amylopectin and small granule size as characteristics for rapid RS formation in isolated starch, which was not evident in the whole tuber. In contrast, Huckleberry Gold formed RS in the tuber already shortly after cooking, whereas slow RS formation was evident in the isolated starch. The results suggest, that starch structural characteristics play a role in RS formation, but non-starch constituents of the tuber have to be considered as well. The results help to identify breeding goals for varieties with low GI and high nutritional value.

4.
Front Nutr ; 9: 916642, 2022.
Article in English | MEDLINE | ID: mdl-35911109

ABSTRACT

This study was conducted to determine the volatile organic compounds (VOCs) associated with fruit flavor in diverse tomato cultivars (salad and cocktail cultivars) under organic low-input production. For this objective, 60 cultivars deriving from very diverse breeding programs 1880-2015 were evaluated in 2015, and a subset of 20 cultivars was selected for further evaluation in 2016. The diversity of instrumentally determined traits, especially for VOCs concentration and sensory properties (fruit firmness, juiciness, skin firmness, sweetness, sourness, aroma, and acceptability), was investigated at two harvest dates. The evaluation of the cultivars exhibited a wide range of variation for all studied traits, with the exception of a few VOCs. Cultivar had the most important effect on all instrumentally determined traits, while the influence of cultivar × harvest date × year interaction was significant for 17 VOCs, but not for total soluble solid (TSS) and titratable acidity (TA). The VOCs with the highest proportion (>8%) were hexanal, 6-methyl-5-heptene-2-one, 2-isobutylthiazole, and (E)-2-hexenal, which were identified in all cultivars. Twelve VOCs significantly correlated with one or more sensory attributes and these VOCs also allowed differentiation of the fruit type. Among these VOCs, phenylethyl alcohol and benzyl alcohol positively correlated with acceptability in the cocktail cultivars, whereas 2-isobuthylthiazole and 6-methyl-5-hepten-2-ol negatively correlated with acceptability in the salad cultivars. As a result of this study, organic breeders are recommended to use cultivars from a wide range of breeding programs to improve important quality and agronomic traits. As examples, salad tomatoes "Campari F1", "Green Zebra", and "Auriga", as well as cocktail tomatoes "Supersweet 100 F1", "Sakura F1", and "Black Cherry" showed higher scores for the sensory attributes aroma and acceptability under organic low-input growing conditions. It remains a challenge for breeders and growers to reduce the trade-off of yield and quality.

5.
Nutrients ; 14(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35458132

ABSTRACT

The fate of ß-glucan (BG) health promoting properties during food production is crucial, but not predictable yet. Therefore, high molar mass BG (hBG) and control BG (cBG) were extracted from two barley varieties, characterized and added to wheat breads at levels of 3% and 6%. Bread quality criteria, carbohydrate contents and BG content and structural properties were determined. Additionally, breads were subjected to an in vitro digestion. The BG content in the chyme, molar mass, molar ratio, viscosity and bile acid retention were determined. The hBG and the cBG decreased loaf volume and increased crumb hardness with increasing BG content. The reduction in BG content during bread making was similar for hBG and cBG, but the molar mass of cBG decreased to a greater extent. As a result, only 10% of cBG entering in vitro digestion were found in the chyme afterwards, while 40% of the ingested hBG were detected. Molar mass reduction was much more severe for cBG compared to hBG. The use of hBG showed higher viscosity and better bile acid retention, indicating cholesterol lowering properties, compared to similar or higher amounts of cBG. These results provide valuable knowledge on the criteria to select BG-rich raw materials for ideal health promoting properties.


Subject(s)
Bread , beta-Glucans , beta-Glucans/chemistry , Bile Acids and Salts , Health Promotion
6.
Foods ; 11(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406998

ABSTRACT

Amaranth and finger millet are important food security crops in Africa but show poor bread making ability, even in composite wheat breads. Malting and steaming are promising approaches to improve composite bread quality, which have not been fully explored yet. Therefore, in this study, wheat was blended with native, steamed or malted finger millet or amaranth in the ratio of 70:30. Wheat/native amaranth (WHE-NAM) and wheat/malted amaranth (WHE-MAM) had longer dough development times and higher dough stabilities, water absorption capacities and farinograph quality numbers than wheat/steamed amaranth (WHE-SAM), wheat/native finger millet (WHE-NFM), wheat/steamed finger millet (WHE-SFM) or wheat/malted finger millet (WHE-MFM). The WHE-NAM and WHE-MAM breads had lower crumb firmness and chewiness, higher resilience and cohesiveness and lighter colours than WHE-NFM, WHE-SFM and WHE-MFM. Starch and protein digestibility of composite breads were not different (p > 0.05) from each other and ranged between 95−98% and 83−91%, respectively. Composite breads had higher ash (1.9−2.5 g/100 g), dietary fibre (5.7−7.1 g/100 g), phenolic acid (60−122 mg/100 g) and phytate contents (551−669 mg/100 g) than wheat bread (ash 1.6 g/100 g; dietary fibre 4.5 g/100 g; phenolic acids 59 mg/100 g; phytate 170 mg/100 g). The WHE-NAM and WHE-MAM breads possessed the best crumb texture and nutritional profile among the composite breads.

7.
Plant Physiol Biochem ; 159: 89-99, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348242

ABSTRACT

The macronutrient potassium (K) has vital physiological functions in plants and its availability can strongly impact quality of crops like tomato. The impact of K nutrition on conventional tomato fruit quality parameters has been described several times, but detailed investigations on the effect of K supply on the fruit metabolite profile are still rare. To fill this gap, we investigated the influence of K fertilization on the metabolite profile of tomato fruits. For this purpose, an outdoor pot experiment with three different cocktail tomato cultivars was performed. A fertilization regimen with five K levels was applied, ranging from deficiency to sufficient supply. Fruit samples were analyzed by untargeted GC×GC-MS to cover the primary metabolite profile as well as some secondary metabolites. As verified using ICP-OES, fruit K content was highly proportional to the supplied amount of K. At the metabolite profile level, the most prominent and cultivar-independent effect of increased K fertilization was the rise of tricarboxylic acid (TCA) cycle intermediates. Further effects were more cultivar-specific, for example an increase of the mobile nitrogen pool (e.g. amines like putrescine and amides like asparagine), changes in the profile of minor sugars (especially disaccharides) as well as higher levels of some secondary metabolites. Pronounced response patterns were mainly observed in the cultivars Primavera and Yellow Submarine that were recently characterized as higher yielding, demanding a stronger consideration of cultivar differences in future studies.


Subject(s)
Fertilizers , Fruit , Potassium , Solanum lycopersicum , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Solanum lycopersicum/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Potassium/pharmacology
9.
J Sci Food Agric ; 99(7): 3350-3358, 2019 May.
Article in English | MEDLINE | ID: mdl-30584798

ABSTRACT

BACKGROUND: The market for cocktail tomatoes is growing continuously, mainly because of their good taste. Titratable acids (TA), total soluble solids (TSS) and dry matter (DM) contents correlate positively with good taste. So far, the impact of different potassium (K) applications on yield and consumer-oriented quality traits has not been comprehensively described for cultivars of smaller fruits. To fill this gap, we tested the effect of different K fertilization regimes on three cultivars of small-sized or cocktail tomatoes. RESULTS: A positive impact on quality parameters (TSS, TA, DM, color and firmness) was detected by raising the K fertilizer application for the cocktail tomato cultivars Primavera and Yellow Submarine. The cultivar Resi showed no response to fertilization, except for TSS and TA. Yield increased significantly by higher K application only in Primavera, the most productive cultivar. The K concentration in tomato rose with increasing K application. CONCLUSION: Because TSS and TA increased in all cultivars, whereas only one cultivar showed an increase in yield, the results of the present study emphasize the importance of the application of cultivar-specific mineral fertilizers on yield- and consumer-oriented quality traits. © 2018 Society of Chemical Industry.


Subject(s)
Potassium/metabolism , Solanum lycopersicum/chemistry , Color , Consumer Behavior , Fertilizers/analysis , Fruit/chemistry , Fruit/metabolism , Humans , Solanum lycopersicum/metabolism , Minerals/analysis , Taste
10.
J Agric Food Chem ; 65(47): 10165-10173, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29111715

ABSTRACT

Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.


Subject(s)
Cacao/growth & development , Plant Extracts/chemistry , Seeds/chemistry , Cacao/chemistry , Ecosystem , Environment , Phenols/chemistry , Seasons , Seeds/growth & development
11.
J Proteomics ; 133: 86-92, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26612662

ABSTRACT

We analyzed the effect of Fusarium graminearum infection on field-grown naked barley (Hordeum vulgare nudum). The ears were inoculated with F. graminearum spores during anthesis. In the course of ripening, grains in five phenological growth stages of naked barley from milk ripe to plant death were sampled. The albumin and globulin proteins of inoculated grains and untreated (control) grains were separated by two-dimensional gel electrophoresis. Forty-five spots composing of proteins that were changed in abundance due to F. graminearum infection were subsequently identified by mass spectrometry. Various proteins showing altered expression pattern after Fusarium infection were linked to stress response such as plant signal transduction pathways, fungal defense and oxidative burst. More proteins changed during early grain ripening stages than during later ripening stages. Protease inhibitors occurred at increased abundancy during milk ripe stage. A thaumatin-like protein accumulated at plant death stage. Proteins linked to nitrogen metabolism and protein biosynthesis were mainly reduced, whereas those linked to carbon metabolism were predominantly increased in infected grains. BIOLOGICAL SIGNIFICANCE: Fusarium graminearum infection can lead to significant contamination of grains with mycotoxins. With this 2D-based proteomics study we give an insight into plant­pathogen interactions between the non-model plant naked barley and the fungus F. graminearum during five stages of grain development. Over the multiple developmental stages we observed specific patterns of changes induced by the fungus: the primary plant metabolism and inhibition of fungal protease were predominantly affected during early grain development stages. During the entire grain development we found an induced accumulation of thaumatin-like proteins due to the fungal infection indicating their fundamental role for naked barley defense.


Subject(s)
Fusarium/physiology , Hordeum , Host-Pathogen Interactions , Plant Diseases/microbiology , Seeds , Hordeum/metabolism , Hordeum/microbiology , Seeds/metabolism , Seeds/microbiology
12.
Food Technol Biotechnol ; 53(3): 261-268, 2015 Sep.
Article in English | MEDLINE | ID: mdl-27904357

ABSTRACT

This study was conducted to improve the knowledge of molecular processes involved in the interaction between Fusarium graminearum and emmer in the course of grain ripening. Emmer plants were artificially inoculated with a F. graminearum spore suspension at anthesis. In the course of grain ripening from milk ripe to plant death stage, grains at four phenological growth stages were collected for analysis. The infection degree was evaluated based on the F. graminearum DNA content in emmer grain infolding tissues (glumes and rachis). For proteome analysis the albumin and globulin fractions of emmer grains, consisting of proteins with various functions related to the development and stress response, were analysed regarding the changes due to Fusarium infection by two-dimensional gel electrophoresis. Altogether, forty-three proteins affected by infection were identified by mass spectrometry. Enzymes detoxifying reactive oxygen species were regulated at all developmental stages. In the early stage of grain development, the abundance of proteins related to stress response, such as 2-Cys peroxiredoxin, a chitinase, a xylanase inhibitor and a spermidine synthase was increased. During later stage of grain development, the abundance of stress-related proteins, such as chitinases, heat shock proteins and an α-amylase inhibitor-like protein, decreased. During all ripening stages, but especially during medium milk stage (BBCH 75) and soft dough stage (BBCH 85), the abundance of proteins related to carbon metabolism, starch and protein biosynthesis as well as photosynthesis increased due to F. graminearum infection. At the plant death stage (BBCH 97) the abundance of only two proteins related to metabolism decreased.

13.
Proc Biol Sci ; 281(1775): 20132440, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24307669

ABSTRACT

Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.


Subject(s)
Bees/physiology , Crops, Agricultural/growth & development , Pollination , Animals , Commerce , Crops, Agricultural/economics
14.
J Sci Food Agric ; 94(10): 2064-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24323937

ABSTRACT

BACKGROUND: Wines rich in biogenic amines can cause adverse health effects to the consumer. Being nitrogen-containing substances, the amount of amines in wines might be strongly influenced by the rate of nitrogen fertiliser application during grape production. The aim of this work was to evaluate the effect of nitrogen fertilisation in the vineyard on the formation of biogenic amines in musts and wines. RESULTS: In a field experiment which compared unfertilised and fertilised (60 and 150 kg N ha(-1)) vines over two separate years, the total amine concentrations in must and wine increased. The latter was due to an increase of individual amines such as ethylamine, histamine, isopentylamine, phenylethylamine and spermidine in the musts and wines with the nitrogen application. Furthermore, the fermentation process increased the concentration of histamine and ethylamine in most of the treatments, while spermidine, spermine and isopentylamine concentrations generally decreased. Throughout both vintages, the concentrations of tyramine and histamine of the investigated musts and wines never reached detrimental levels to the health of non-allergenic people. CONCLUSIONS: Nitrogen fertilisation has a significant effect on amines formation in musts and wines. Furthermore, during fermentation, ethylamine and histamine increased while other amines were presumably serving as N sources during fermentation.


Subject(s)
Biogenic Amines/analysis , Fermentation , Fertilizers , Fruit/metabolism , Nitrogen/metabolism , Vitis/metabolism , Wine/analysis , Humans
15.
J Sci Food Agric ; 92(7): 1424-31, 2012 May.
Article in English | MEDLINE | ID: mdl-22162026

ABSTRACT

BACKGROUND: Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. RESULTS: Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. CONCLUSION: The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans.


Subject(s)
Antioxidants/metabolism , Fruit/metabolism , Genotype , Phytophthora infestans , Plant Diseases/microbiology , Plant Immunity , Solanum lycopersicum/genetics , Ascorbic Acid/genetics , Ascorbic Acid/metabolism , Carotenoids/genetics , Carotenoids/metabolism , Environment , Genetic Variation , Germany , Lycopene , Solanum lycopersicum/metabolism , Organic Agriculture , Phenols/metabolism , Plant Diseases/genetics , Plant Immunity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...