Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Clin Cancer Res ; 30(5): 1038-1053, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38127282

ABSTRACT

PURPOSE: Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss. Although genomic studies have uncovered key driver events promoting tumor progression, the transcriptional changes preceding malignant transformation remain poorly defined. EXPERIMENTAL DESIGN: Here we resolve gene-expression profiles in PNST across the neurofibroma-to-MPNST continuum in NF1 patients and mouse models, revealing early molecular features associated with neurofibroma evolution and transformation. RESULTS: Our findings demonstrate that ANF exhibit enhanced signatures of antigen presentation and immune response, which are suppressed as malignant transformation ensues. MPNST further displayed deregulated survival and mitotic fidelity pathways, and targeting key mediators of these pathways, CENPF and BIRC5, disrupted the growth and viability of human MPNST cell lines and primary murine Nf1-Cdkn2a-mutant Schwann cell precursors. Finally, neurofibromas contiguous with MPNST manifested distinct alterations in core oncogenic and immune surveillance programs, suggesting that early molecular events driving disease progression may precede histopathologic evidence of malignancy. CONCLUSIONS: If validated prospectively in future studies, these signatures may serve as molecular diagnostic tools to augment conventional histopathologic diagnosis by identifying neurofibromas at high risk of undergoing malignant transformation, facilitating risk-adapted care.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma , Neurofibromatosis 1 , Neurofibrosarcoma , Animals , Humans , Mice , Gene Expression Profiling , Nerve Sheath Neoplasms/genetics , Neurofibroma/genetics , Neurofibromatosis 1/genetics , Neurofibrosarcoma/genetics
3.
Clin Cancer Res ; 29(17): 3438-3456, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37406085

ABSTRACT

PURPOSE: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS: Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS: These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Humans , Mice , Animals , Neurofibroma, Plexiform/etiology , Neurofibroma, Plexiform/genetics , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/genetics , MAP Kinase Signaling System , Proteomics , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Neurofibroma/complications , Cyclin-Dependent Kinase 4/genetics
5.
PLoS One ; 16(7): e0252048, 2021.
Article in English | MEDLINE | ID: mdl-34264955

ABSTRACT

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Subject(s)
Meningeal Neoplasms/genetics , Meningioma/genetics , Neurilemmoma/genetics , Neurofibromin 2/deficiency , Neurofibromin 2/genetics , Organophosphorus Compounds/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Cell Proliferation , Humans , Mutation , Neurilemmoma/pathology
6.
Neurooncol Adv ; 3(1): vdab063, 2021.
Article in English | MEDLINE | ID: mdl-34131650

ABSTRACT

BACKGROUND: Genetically susceptible individuals can develop malignancies after irradiation of normal tissues. In the context of therapeutic irradiation, it is not known whether irradiating benign neoplasms in susceptible individuals promotes neoplastic transformation and worse clinical outcomes. Individuals with Neurofibromatosis 1 (NF1) are susceptible to both radiation-induced second malignancies and spontaneous progression of plexiform neurofibromas (PNs) to malignant peripheral nerve sheath tumors (MPNSTs). The role of radiotherapy in the treatment of benign neoplasms such as PNs is unclear. METHODS: To test whether radiotherapy promotes neoplastic progression of PNs and reduces overall survival, we administered spinal irradiation (SI) to conditional knockout mouse models of NF1-associated PNs in 2 germline contexts: Nf1 fllfl ; PostnCre + and Nf1 fl/- ; PostnCre + . Both genotypes develop extensive Nf1 null spinal PNs, modeling PNs in NF1 patients. A total of 101 mice were randomized to 0 Gy, 15 Gy (3 Gy × 5), or 30 Gy (3 Gy × 10) of spine-focused, fractionated SI and aged until signs of illness. RESULTS: SI decreased survival in both Nf1 fllfl mice and Nf1 fl/- mice, with the worst overall survival occurring in Nf1 fl/- mice receiving 30 Gy. SI was also associated with increasing worrisome histologic features along the PN-MPNST continuum in PNs irradiated to higher radiation doses. CONCLUSIONS: This preclinical study provides experimental evidence that irradiation of pre-existing PNs reduces survival and may shift PNs to higher grade neoplasms.

7.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Article in English | MEDLINE | ID: mdl-33658640

ABSTRACT

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Gene Expression Regulation, Neoplastic , Neurofibrosarcoma/pathology , STAT3 Transcription Factor/metabolism , Adolescent , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neurofibrosarcoma/genetics , Neurofibrosarcoma/metabolism , Prognosis , STAT3 Transcription Factor/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Nat Med ; 27(1): 165-173, 2021 01.
Article in English | MEDLINE | ID: mdl-33442015

ABSTRACT

Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.


Subject(s)
Anilides/therapeutic use , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Pyridines/therapeutic use , Adolescent , Adult , Anilides/adverse effects , Anilides/pharmacokinetics , Animals , Disease Models, Animal , Female , Genes, Neurofibromatosis 1 , Humans , Male , Mice , Mice, Mutant Strains , Neurofibroma, Plexiform/genetics , Neurofibroma, Plexiform/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Pain Measurement , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyridines/adverse effects , Pyridines/pharmacokinetics , Quality of Life , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Translational Research, Biomedical , Young Adult
10.
J Biol Chem ; 295(29): 9948-9958, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32471868

ABSTRACT

Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice.


Subject(s)
Gene Knockdown Techniques , Neoplasms, Second Primary , Neurofibroma, Plexiform , Neurofibromatosis 1 , Neuropeptides/deficiency , rac1 GTP-Binding Protein/deficiency , Animals , Mice , Mice, Knockout , Neoplasms, Second Primary/enzymology , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/prevention & control , Neurofibroma, Plexiform/enzymology , Neurofibroma, Plexiform/genetics , Neurofibroma, Plexiform/prevention & control , Neurofibromatosis 1/enzymology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/deficiency , Neurofibromin 1/metabolism , Neuropeptides/metabolism , Proto-Oncogene Mas , rac1 GTP-Binding Protein/metabolism
11.
Oncotarget ; 9(1): 718-725, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29416648

ABSTRACT

Mutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms.

12.
Mol Ecol ; 20(2): 299-310, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21091561

ABSTRACT

The expression of cone opsin genes is a primary determinant of the characteristics of colour vision. Interspecific variation in opsin expression is common in African cichlids. It is correlated with foraging among cichlids from Lake Malawi, and with ambient light environment among cichlids from Lake Victoria. In this study, we tested whether gene expression varied within species such that it might be important in contributing to divergence. We hypothesized that light attenuation with depth would be correlated with predictable changes in gene expression in Lake Malawi, and that this variation would tune visual sensitivities to match the ambient light environment. We observed significant differences in cone opsin expression in three different comparisons among populations of the same species. Higher LWS expression was found in shallow versus deep Copadichromis eucinostomus. In Metriaclima zebra, individuals from Zimbawe Rock expressed significantly more SWS2B than those from Thumbi West Island, although these locales have similar ambient light environments. Finally, Tropheops gracilior from deeper water had significantly more variation in expression than their shallow counterparts. These results support that gene expression varies significantly between populations of the same species. Surprisingly, these results could not be explained by predicted visual performance as models predicted that differential expression patterns did not confer sensitivity advantages at different depths. This suggested that expression variation did not confer a local sensitivity advantage. Therefore, our findings were contrary to a primary requirement of the sensory bias hypothesis. As such, other explanations for intraspecific gene expression variation need to be tested.


Subject(s)
Cichlids/genetics , Cone Opsins/genetics , Gene Expression , Retinal Cone Photoreceptor Cells/metabolism , Visual Acuity/genetics , Africa , Animals , Cichlids/physiology , Color Vision , Evolution, Molecular , Fresh Water , Genetic Variation , Light , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...