Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 9960, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705631

ABSTRACT

Metabolic syndrome increases risk of complicating co-morbidities. Current clinical indicators reflect established metabolic impairment, preventing earlier intervention strategies. Here we show that circulating sphingolipids are altered in the very early stages of insulin resistance development. The study involved 16 paired overweight but healthy monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years. Importantly, animals did not differ in adiposity and were euglycemic throughout the study period. Using mass spectrometry, circulating sphingolipids, including ceramides and sphingomyelins, were detected and quantified for healthy and impaired animals at both time points. At time of diagnosis, several ceramides were significantly different between healthy and impaired animals. Correlation analysis revealed differences in the interactions among ceramides in impaired animals at diagnosis and pre-diagnosis when animals were clinically indistinguishable from controls. Furthermore, correlations between ceramides and early-stage markers of insulin resistance, diacylglycerols and non-esterified fatty acids, were distinct for healthy and impaired states. Regression analysis identifies coordinated changes in lipid handling across lipid classes as animals progress from healthy to insulin resistant. Correlations between ceramides and the adipose-derived adipokine adiponectin were apparent in healthy animals but not in the metabolically impaired animals, even in advance of loss in insulin sensitivity. These data suggest that circulating ceramides are clinically relevant in identifying disease risk independent of differences in adiposity, and may be important in devising preventative strategies.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Animals , Ceramides , Macaca mulatta , Metabolic Syndrome/etiology , Obesity/metabolism , Sphingolipids
2.
Elife ; 112022 03 17.
Article in English | MEDLINE | ID: mdl-35297761

ABSTRACT

The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.


Subject(s)
Adiponectin , Receptors, Adiponectin , Adiponectin/metabolism , Animals , Male , Mice , Muscle, Skeletal/metabolism , Piperidines , Primates , Quality of Life , Receptors, Adiponectin/metabolism
3.
Aging Cell ; 20(6): e13374, 2021 06.
Article in English | MEDLINE | ID: mdl-33951283

ABSTRACT

Age is a major risk factor for late-onset Alzheimer's disease (AD) but seldom features in laboratory models of the disease. Furthermore, heterogeneity in size and density of AD plaques observed in individuals are not recapitulated in transgenic mouse models, presenting an incomplete picture. We show that the amyloid plaque microenvironment is not equivalent between rodent and primate species, and that differences in the impact of AD pathology on local metabolism and inflammation might explain established differences in neurodegeneration and functional decline. Using brain tissue from transgenic APP/PSEN1 mice, rhesus monkeys with age-related amyloid plaques, and human subjects with confirmed AD, we report altered energetics in the plaque microenvironment. Metabolic features included changes in mitochondrial distribution and enzymatic activity, and changes in redox cofactors NAD(P)H that were shared among species. A greater burden of lipofuscin was detected in the brains from monkeys and humans of advanced age compared to transgenic mice. Local inflammatory signatures indexed by astrogliosis and microglial activation were detected in each species; however, the inflamed zone was considerably larger for monkeys and humans. These data demonstrate the advantage of nonhuman primates in modeling the plaque microenvironment, and provide a new framework to investigate how AD pathology might contribute to functional loss.


Subject(s)
Alzheimer Disease , Animals , Disease Models, Animal , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...