Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Remote Sens (Basel) ; 11(7): 796, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31157118

ABSTRACT

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat mission is a pathfinder to demonstrate technologies for the measurement of Earth's radiation budget, the quantification of which is critical for predicting the future course of climate change. A specific motivation is the need for lower-cost technology alternatives that could be used for multi-point constellation measurements of Earth outgoing radiation. RAVAN launched 11 November 2016, into a nearly 600-km, Sun-synchronous orbit, and collected data for over 20 months. RAVAN successfully demonstrates two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as absorbers in broadband radiometers for measuring Earth's outgoing radiation and the total solar irradiance. VACNT forests are arguably the blackest material known and have an extremely flat spectral response over a wide wavelength range, from the ultraviolet to the far infrared. As radiometer absorbers, they have greater sensitivity for a given time constant and are more compact than traditional cavity absorbers. The second technology demonstrated is a pair of gallium phase-change black body cells that are used as a stable reference to monitor the degradation of RAVAN's radiometer sensors on orbit. Four radiometers (two VACNT, two cavity), the pair of gallium black bodies, and associated electronics are accommodated in the payload of an agile 3U CubeSat bus that allows for routine solar and deep-space attitude maneuvers, which are essential for calibrating the Earth irradiance measurements. The radiometers show excellent long-term stability over the course of the mission and a high correlation between the VACNT and cavity radiometer technologies. Short-term variability-at greater than the tenths-of-a-Watt/m2 needed for climate accuracy-is a challenge that remains, consistent with insufficient thermal knowledge and control on a 3U CubeSat. There are also VACNT-cavity biases of 3% and 6% in the Total and SW channels, respectively, which would have to be overcome in a future mission. Although one of the black bodies failed after four months, the other provided a repeatable standard for the duration of the project. We present representative measurements from the mission and demonstrate how the radiometer time series can be used to reconstruct outgoing radiation spatial information. Improvements to the technology and approach that would lead to better performance and greater accuracy in future missions are discussed.

2.
J Res Natl Inst Stand Technol ; 117: 185-201, 2012.
Article in English | MEDLINE | ID: mdl-26900523

ABSTRACT

The need to understand and monitor climate change has led to proposed radiometric accuracy requirements for space-based remote sensing instruments that are very stringent and currently outside the capabilities of many Earth orbiting instruments. A major problem is quantifying changes in sensor performance that occur from launch and during the mission. To address this problem on-orbit calibrators and monitors have been developed, but they too can suffer changes from launch and the harsh space environment. One solution is to use the Moon as a calibration reference source. Already the Moon has been used to remove post-launch drift and to cross-calibrate different instruments, but further work is needed to develop a new model with low absolute uncertainties capable of climate-quality absolute calibration of Earth observing instruments on orbit. To this end, we are proposing an Earth-based instrument suite to measure the absolute lunar spectral irradiance to an uncertainty(1) of 0.5 % (k=1) over the spectral range from 320 nm to 2500 nm with a spectral resolution of approximately 0.3 %. Absolute measurements of lunar radiance will also be acquired to facilitate calibration of high spatial resolution sensors. The instruments will be deployed at high elevation astronomical observatories and flown on high-altitude balloons in order to mitigate the effects of the Earth's atmosphere on the lunar observations. Periodic calibrations using instrumentation and techniques available from NIST will ensure traceability to the International System of Units (SI) and low absolute radiometric uncertainties.

3.
Appl Opt ; 47(13): 2430-6, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449309

ABSTRACT

We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30 mum) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid-N(2)-cooled photoconductive devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...