Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 156: 845-853, 2017 07.
Article in English | MEDLINE | ID: mdl-28499499

ABSTRACT

BACKGROUND: Heat-related morbidity and mortality is a recognized public health concern. However, public health officials need to base policy decisions on local evidence, which is often lacking for smaller communities. OBJECTIVES: To evaluate the association between maximum daily heat index (HI) and morbidity and mortality in 15 New England communities (combined population: 2.7 million) in order to provide actionable evidence for local officials. METHODS: We applied overdispersed Poisson nonlinear distributed lag models to evaluate the association between HI and daily (May-September) emergency department (ED) admissions and deaths in each of 15 study sites in New Hampshire, Maine, and Rhode Island, controlling for time trends, day of week, and federal holidays. Site-specific estimates were meta-analyzed to provide regional estimates. RESULTS: Associations (sometimes non-linear) were observed between HI and each health outcome. For example, a day with a HI of 95°F vs. 75°F was associated with a cumulative 7.5% (95% confidence interval [CI]: 6.5%, 8.5%) and 5.1% (95% CI: 0.2%, 10.3%) higher rate of all-cause ED visits and deaths, respectively, with some evidence of regional heterogeneity. We estimate that in the study area, days with a HI≥95°F were associated with an annual average of 784 (95% CI: 658, 908) excess ED visits and 22 (95% CI: 3, 39) excess deaths. CONCLUSIONS: Our results suggest the presence of adverse health impacts associated with HI below the current local guideline criteria of HI≥100°F used to issue heat advisories. We hypothesize that lowering this threshold may lead to substantially reduced heat-related morbidity and mortality in the study area.


Subject(s)
Emergency Service, Hospital/statistics & numerical data , Hot Temperature/adverse effects , Mortality , Aged , Female , Humans , Humidity , Male , Morbidity , New England , Public Policy
2.
J Public Health Manag Pract ; 14(6): 581-91, 2008.
Article in English | MEDLINE | ID: mdl-18849779

ABSTRACT

Traditional environmental public health surveillance consists of separately measuring hazards, exposures, and health outcomes. The Environmental Public Health Tracking (EPHT) Network seeks to accrue additional information by linking hazard or exposure data to health outcomes data. A natural progression is to consider tracking the "link" itself, that is, to track the association between an environmental hazard and a health outcome. The Maine EPHT Program conducted a case-crossover analysis to measure associations between daily estimated ambient ozone and particulate matter (PM2.5) and asthma-related emergency department (ED) visits for 2000-2003. We found an overall association of 7 percent (95% confidence interval, 4-11) excess asthma-related ED visits per 10-ppb increase in ozone averaged over 4 days (lag 0-3). The association was positive in the first 3 years and negative in the last. The excess risk was concentrated among females aged 15 to 34 and males younger than 15. The methodology for tracking associations between ambient air quality and acute morbidity is not generalizable to most other EPHT topic areas, but there are ample reasons to pursue this activity. The analysis can potentially help evaluate the effectiveness of regulatory and intervention programs, as well as inform us about trends, sensitive subpopulations, and changing potency of air constituents.


Subject(s)
Asthma/chemically induced , Emergency Service, Hospital/statistics & numerical data , Ozone/adverse effects , Adolescent , Adult , Aged , Cross-Over Studies , Environmental Exposure , Female , Humans , Maine , Male , Middle Aged , Ozone/analysis , Population Surveillance , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...