Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 27(4): 2291-2303, 2022 04.
Article in English | MEDLINE | ID: mdl-35210569

ABSTRACT

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.


Subject(s)
DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Neurons/metabolism
2.
Dalton Trans ; 43(11): 4593-602, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24549032

ABSTRACT

Neutral Zr(IV) and Hf(IV) dimethyl complexes stabilized by unsymmetrical dianionic {N,C,N'} pincer ligands have been prepared from their corresponding bis-amido complexes upon treatment with AlMe3. Their structure consists of a central ó-bonded aryl donor group (C) capable of forming robust M-C bonds with the metal center, enforced by the synergic effect of both the coordination of peripheral donor groups (N) and the chelating rigid structure of the {N,C,N} ligand framework. Such a combination translates into systems having a unique balance between stability and reactivity. These Zr(IV) and Hf(IV) dimethyl complexes were converted in situ into cationic species [M(IV){N⁻,C⁻,N}Me][B(C6F5)4] which are active catalysts for the room temperature (r.t.) intramolecular hydroamination/cyclization of primary and secondary aminoalkenes as well as for the high temperature ethylene-1-octene copolymerizations.

3.
Dalton Trans ; 42(45): 16056-65, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23945547

ABSTRACT

Neutral Zr(IV) and Hf(IV) dimethyl complexes stabilized by unsymmetrical dianionic {N,C,N'} pincer ligands have been prepared from their corresponding bis-amido complexes upon treatment with AlMe3. Their structure consists of a central σ-bonded aryl donor group (C) capable of forming robust M-C bonds with the metal center, enforced by the synergic effect of both the coordination of peripheral donor groups (N) and the chelating rigid structure of the {N,C,N} ligand framework. Such a combination translates into systems having a unique balance between stability and reactivity. These Zr(IV) and Hf(IV) dimethyl complexes were converted in situ into cationic species [M(IV){N(-),C(-),N}Me][B(C6F5)4] which are active catalysts for the room temperature (r.t.) intramolecular hydroamination/cyclization of primary and secondary aminoalkenes as well as for the high temperature ethylene-1-octene copolymerizations.

4.
ACS Comb Sci ; 14(3): 218-23, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22225535

ABSTRACT

Formal cycloaddition reactions between imines and cyclic anhydrides serve as starting point for the synthesis of diverse libraries of small molecules. The synthesis of succinic anhydrides substituted with electron-withdrawing groups is facilitated by new mild conditions for alkylation of aryl-substituted acetyl esters with ethyl bromoacetate. These anhydrides are then used in formal cycloaddition reactions with imines to produce γ-lactams. 2-Fluoro-5-nitrophenylsuccinic anhydride reacts efficiently with imines to provide lactams that are further diversified by conversion of the nitro group to either an aniline and an azide for subsequent reactions with acylating agents and alkynes, respectively. The synthesis of cyanosuccinic anhydride is reported for the first time, and the use of this compound in reactions with imines and subsequent functionalization of the resultant lactams is demonstrated.


Subject(s)
Imines/chemistry , Lactams/chemical synthesis , Small Molecule Libraries/chemical synthesis , Succinic Anhydrides/chemistry , Cyclization , Lactams/chemistry , Molecular Structure , Small Molecule Libraries/chemistry , Spiro Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...