Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 377(2154): 20180407, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31378179

ABSTRACT

Recent observations of Jupiter's Great Red Spot indicate that the thermosphere above the storm is hotter than its surroundings by more than 700 K. Possible suggested sources for this heating have thus far included atmospheric gravity waves and lightning-driven acoustic waves. Here, we propose that Joule heating, driven by Great Red Spot vorticity penetrating up into the lower stratosphere and coupling to the thermosphere, may contribute to the large observed temperatures. The strength of Joule heating will depend on the local inclination angle of the magnetic field and thus the observed emissions and inferred temperatures should vary with planetary longitude as the Great Red Spot tracks across the planet. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.

2.
Nature ; 445(7126): 399-401, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17251972

ABSTRACT

The upper atmospheres of the four Solar System giant planets exhibit high temperatures that cannot be explained by the absorption of sunlight. In the case of Saturn the temperatures predicted by models of solar heating are approximately 200 K, compared to temperatures of approximately 400 K observed independently in the polar regions and at 30 degrees latitude. This unexplained 'energy crisis' represents a major gap in our understanding of these planets' atmospheres. An important candidate for the source of the missing energy is the magnetosphere, which injects energy mostly in the polar regions of the planet. This polar energy input is believed to be sufficient to explain the observed temperatures, provided that it is efficiently redistributed globally by winds, a process that is not well understood. Here we show, using a numerical model, that the net effect of the winds driven by the polar energy inputs is not to heat but to cool the low-latitude thermosphere. This surprising result allows us to rule out known polar energy inputs as the solution to the energy crisis at Saturn. There is either an unknown--and large--source of polar energy, or, more probably, some other process heats low latitudes directly.

SELECTION OF CITATIONS
SEARCH DETAIL
...