Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(4): e2842, 2023 06.
Article in English | MEDLINE | ID: mdl-36920346

ABSTRACT

The interaction of climate change and increasing anthropogenic water withdrawals is anticipated to alter surface water availability and the transport of carbon (C), nitrogen (N), and phosphorus (P) in river networks. But how changes to river flow will alter the balance, or stoichiometry, of these fluxes is unknown. The Lower Flint River Basin (LFRB) is part of an interstate watershed relied upon by several million people for diverse ecosystem services, including seasonal crop irrigation, municipal drinking water access, and public recreation. Recently, increased water demand compounded with intensified droughts have caused historically perennial streams in the LFRB to cease flowing, increasing ecosystem vulnerability. Our objectives were to quantify how riverine dissolved C:N:P varies spatially and seasonally and determine how monthly stoichiometric fluxes varied with overall water availability in a major tributary of LFRB. We used a long-term record (21-29 years) of solute water chemistry (dissolved organic carbon, nitrate/nitrite, ammonia, and soluble reactive phosphorus) paired with long-term stream discharge data across six sites within a single LFRB watershed. We found spatial and seasonal differences in soluble nutrient concentrations and stoichiometry attributable to groundwater connections, the presence of a major floodplain wetland, and flow conditions. Further, we showed that water availability, as indicated by the Palmer Drought Severity Index (PDSI), strongly predicted stoichiometry with generally lower C:N and C:P and higher N:P fluxes during periods of low water availability (PDSI < -4). These patterns suggest there may be long-term and significant changes to stream ecosystem function as water availability is being dramatically altered by human demand with consequential impacts on solute transport, in-stream processing, and stoichiometric ratios.


Subject(s)
Ecosystem , Water , Humans , Rivers , Nitrogen , Phosphorus
3.
Phytochemistry ; 185: 112662, 2021 May.
Article in English | MEDLINE | ID: mdl-33774572

ABSTRACT

Apocynaceae are well known for diverse specialized metabolites that are distributed in a phylogenetically informative manner. Pyrrolizidine alkaloids (PAs) have been reported sporadically in one lineage in the family, the APSA clade, but few species have been studied to date. We conducted the first systematic survey of Apocynaceae for retronecine-type PAs, sampling leaves from 231 species from 13 of 16 major lineages within the APSA clade using HPLC-MS/MS. We also followed up preliminary evidence for infra-specific variation of PA detectability in Echites umbellatus Jacq. Four precursor ion scans (PREC) were developed for a high-throughput survey for chemicals containing a structural moiety common to many PAs, the retronecine core. We identified with high confidence PAs in 7 of 8 sampled genera of tribe Echiteae, but not in samples from the closely related Odontadenieae and Mesechiteae, confirming the utility of PAs as a taxonomic character in tribal delimitation. Occurrence of PAs in Malouetieae is reported with moderate confidence in Galactophora schomburgkiana Woodson and Eucorymbia alba Stapf, but currently we have low confidence of their presence in Holarrena pubescens Wall. ex G. Don (the one Malouetieae species where they were previously reported), as well as in Holarrena curtisii King & Gamble and in Kibatalia macrophylla (Pierre ex Hua) Woodson. Candidate PAs in some species of Wrightia R. Br. (Wrightieae) and Marsdenia R. Br. (Marsdenieae) are proposed with moderate confidence, but a subset of the compounds in these taxa presenting with a PA-like fragmentation pattern are more likely to be aminobenzoyl glycosides. Candidate PAs are reported in species with predicted (VXXXD) and unexpected (IXXXN) amino acid motifs in their homospermidine synthase-like genes. Detectability of PAs varies among samples of Echites umbellatus and intra-individual plasticity contributes to this variation. Of toxicological importance, novel potential sources of human exposure to pro-toxic PAs were identified in the medicinal plant, Wrightia tinctoria R.Br., and the food plants, Marsdenia glabra Cost. and Echites panduratus A. DC., warranting immediate further research to elucidate the structures of the candidate PAs identified. Method development and limitations are discussed.


Subject(s)
Apocynaceae , Pyrrolizidine Alkaloids , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
4.
Appl Plant Sci ; 6(4): e1143, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30131885

ABSTRACT

PREMISE OF THE STUDY: Understanding the phylogenetic distribution of defensive plant secondary metabolites is essential to the macroevolutionary study of chemically mediated plant-animal interactions. The chemical ecology of pyrrolizidine alkaloids (PAs) has been extensively studied in a number of plant-herbivore systems, including Apocynaceae (the milkweed and dogbane family) and Danainae (the milkweed and clearwing butterflies). A systematic survey is necessary to establish a detailed understanding of their occurrence across Apocynaceae. A survey of this species-rich, mainly tropical and subtropical family will rely heavily on small tissue samples removed from herbarium specimens, some of which will be very old and/or preserved with alcohols or mercuric chloride. METHODS: We optimized PA extraction methods from small leaf fragments of recently collected silica-dried leaves of the PA-positive Echites umbellatus, varying crushing and extraction time. We then applied our optimized method to leaf fragments from 70-167-year-old herbarium specimens of E. umbellatus. To simulate the effect of alcohol treatment on PA detectability in herbarium specimens, we incubated freshly collected leaves of the PA-positive Parsonsia alboflavescens in three different alcohols before drying and compared PA recovery to freshly dried controls. PAs were quantified using high-performance liquid chromatography-mass spectrometry analysis. X-ray fluorescence was used to identify mercury-containing specimens. RESULTS: Fifteen seconds of leaf crushing followed by 24 h of extraction were optimal for PA free-base and N-oxide recovery. This method yielded ~50-fold greater PA recovery than prior methods. Half of the herbarium specimens (13 of 23), including the oldest, tested positive for PAs; leaf age did not correlate with success in PA extraction. Treatment of fresh leaves with alcohol before drying did not diminish PA recovery; mercury was observed in both PA-positive and PA-negative specimens. CONCLUSIONS: PAs can be reliably detected in small tissue samples from herbarium specimens up to 167 years old, including specimens that had been treated with alcohol or mercury salts. The variability of PA presence among herbarium specimens of E. umbellatus indicates that multiple specimens will need to be tested before a particular species is determined to lack PAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...