Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 11(5): e2101658, 2022 03.
Article in English | MEDLINE | ID: mdl-34773385

ABSTRACT

Extracellular vesicles (EVs) are nanosized cell-derived vesicles produced by all cells, which provide a route of intercellular communication by transmitting biological cargo. While EVs offer promise as therapeutic agents, the molecular mechanisms of EV biogenesis are not yet fully elucidated, in part due to the concurrence of numerous interwoven pathways which give rise to heterogenous EV populations in vitro. The equilibrium between the EV-producing pathways is heavily influenced by factors in the extracellular environment, in such a way that can be taken advantage of to boost production of engineered EVs. In this study, a quantifiable EV-engineering approach is used to investigate how different cell media conditions alter EV production. The presence of serum, exogenous EVs, and other signaling factors in cell media alters EV production at the physical, molecular, and transcriptional levels. Further, it is demonstrated that the ceramide-dependent EV biogenesis route is the major pathway to production of engineered EVs during optimized EV-production. These findings suggest a novel understanding to the mechanisms underlying EV production in cell culture which can be applied to develop advanced EV production methods.


Subject(s)
Extracellular Vesicles , Cell Communication , Extracellular Vesicles/metabolism , Organelles , Signal Transduction
2.
Mol Ther Nucleic Acids ; 5: e290, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-27111416

ABSTRACT

The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

3.
BMC Genomics ; 10: 233, 2009 May 18.
Article in English | MEDLINE | ID: mdl-19450280

ABSTRACT

BACKGROUND: The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. RESULTS: The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. CONCLUSION: Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Profiling , Protein-Tyrosine Kinases/genetics , Animals , CD28 Antigens/metabolism , CD3 Complex/metabolism , Cyclosporine/pharmacology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Oligonucleotide Array Sequence Analysis , T-Lymphocyte Subsets/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...