Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
2.
PLoS One ; 9(3): e91990, 2014.
Article in English | MEDLINE | ID: mdl-24637521

ABSTRACT

Previously we showed that granulocyte colony-stimulating factor (G-CSF) in vitro bioactivity is preserved when the protein is joined via a flexible 7 amino acid linker to an immunoglobulin-1 (IgG1)-Fc domain and that the G-CSF/IgG1-Fc fusion protein possessed a longer circulating half-life and improved hematopoietic properties compared to G-CSF in normal rats. We have extended this analysis by comparing the relative hematopoietic potencies of G-CSF/IgG1-Fc to G-CSF in normal mice and to G-CSF and polyethylene glycol (PEG) -modified G-CSF in neutropenic rats. Mice were treated for 5 days using different doses and dosing regimens of G-CSF/IgG1-Fc or G-CSF and circulating neutrophil levels in the animals measured on Day 6. G-CSF/IgG1-Fc stimulated greater increases in blood neutrophils than comparable doses of G-CSF when administered using daily, every other day or every third day dosing regimens. In rats made neutropenic with cyclophosphamide, G-CSF/IgG1-Fc accelerated recovery of blood neutrophils to normal levels (from Day 9 to Day 5) when administered as 5 daily injections or as a single injection on Day 1. By contrast, G-CSF accelerated neutrophil recovery when administered as 5 daily injections, but not when administered as a single injection. G-CSF/IgG1-Fc was as effective as PEG-G-CSF at accelerating neutrophil recovery following a single injection in neutropenic rats. G-CSF/IgG1-Fc and G-CSF/IgG4-Fc fusion proteins in which the 7 amino acid linker was deleted also were effective at accelerating neutrophil recovery following a single injection in neutropenic rats. These studies confirm the enhanced in vivo hematopoietic properties of G-CSF/IgG-Fc fusion proteins.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Immunoglobulin Fc Fragments/pharmacology , Neutropenia/drug therapy , Recombinant Fusion Proteins/pharmacology , Animals , Blood Cell Count , Disease Models, Animal , Female , Gene Expression , Gene Order , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/genetics , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/genetics , Leukocyte Count , Mice , Neutropenia/etiology , Neutrophils/drug effects , Rats , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Time Factors
3.
Endocrinology ; 148(4): 1590-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17234711

ABSTRACT

Recombinant human GH is used to treat GH deficiency in children and adults and wasting in AIDS patients. GH has a circulating half-life of only a few hours in humans and must be administered to patients by daily injection for maximum effectiveness. Previous studies showed that longer-acting forms of GH could be created by modification of GH with multiple 5-kDa amine-reactive polyethylene glycols (PEGs). Eight of nine lysine residues and the N-terminal amino acid were modified to varying extents by amine PEGylation of GH. The amine-PEGylated GH product comprised a complex mixture of multiple PEGylated species that differed from one another in mass, in vitro bioactivity, and in vivo potency. In vitro bioactivity of GH was reduced 100- to 1000-fold by extensive amine PEGylation of the protein. Here we describe a homogeneously modified, mono-PEGylated GH protein that possesses near complete in vitro bioactivity, a long half-life, and increased potency in vivo. The mono-PEGylated GH was created by substituting cysteine for threonine-3 (T3C) of GH, followed by modification of the added cysteine residue with a single 20-kDa cysteine-reactive PEG. The PEG-T3C protein has an approximate 8-fold longer half-life than GH after sc administration to rats. Every other day or every third day administration of PEG-T3C stimulates increases in body weight and tibial epiphysis growth comparable with that produced by daily administration of GH in hypophysectomized rats. Long-acting, mono-PEGylated GH analogs such as PEG-T3C are promising candidates for future testing in humans.


Subject(s)
Bone Development/drug effects , Human Growth Hormone/analogs & derivatives , Human Growth Hormone/pharmacokinetics , Hypophysectomy , Weight Gain/drug effects , Animals , Delayed-Action Preparations , Drug Evaluation, Preclinical , Half-Life , Human Growth Hormone/chemistry , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tibia/drug effects , Treatment Outcome
4.
Exp Hematol ; 34(6): 697-704, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16728273

ABSTRACT

OBJECTIVE: Erythropoietin (Epo) bioactivity is significantly reduced by modification of lysine residues with amine-reactive reagents, which are the most commonly used reagents for attaching polyethylene glycols (PEGs) to proteins to improve protein half-life in vivo. The aims of this study were to determine whether Epo bioactivity can be preserved by targeting attachment of maleimide-PEGs to engineered cysteine analogs of Epo, and to determine whether the pegylated Epo cysteine analogs have improved pharmacokinetic properties in vivo. MATERIALS AND METHODS: Thirty-four Epo cysteine analogs were constructed by site-directed mutagenesis and expressed as secreted proteins in baculovirus-infected insect cells. Following purification, monopegylated derivatives of 12 cysteine analogs were prepared using 20-kDa maleimide-PEGs. In vitro biological activities of the proteins were measured in an Epo-dependent cell proliferation assay. Plasma levels of insect cell-expressed wild-type Epo (BV Epo) and a pegylated Epo cysteine analog were quantitated by ELISA following intravenous administration to rats. RESULTS: Biological activities of 17 purified Epo cysteine analogs and 10 purified pegylated Epo cysteine analogs were comparable to that of BV Epo in the in vitro bioassay. The only pegylated cysteine analogs that displayed consistently reduced in vitro bioactivities were substitutions for lysine residues, PEG-K45C and PEG-K154C. The pegylated Epo cysteine analog had a slower initial distribution phase and a longer terminal half-life than BV Epo in rats, but the majority of both proteins were cleared rapidly from the circulation. CONCLUSIONS: Targeted attachment of maleimide-PEGs to engineered Epo cysteine analogs permits rational design of monopegylated Epo analogs with minimal loss of in vitro biological activity. Insect cell-expressed Epo proteins are cleared rapidly from the circulation in rats, possibly due to improper glycosylation. Site-specific pegylation appears to improve the pharmacokinetic properties of Epo.


Subject(s)
Amino Acid Substitution , Cysteine/chemistry , Erythropoietin/chemistry , Ethylene Glycols/chemistry , Maleimides/chemistry , Animals , Biological Assay , Cell Line , Cysteine/genetics , Erythropoietin/administration & dosage , Erythropoietin/genetics , Erythropoietin/pharmacokinetics , Humans , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins
5.
Bioconjug Chem ; 16(5): 1291-8, 2005.
Article in English | MEDLINE | ID: mdl-16173810

ABSTRACT

Granulocyte macrophage colony-stimulating factor (GM-CSF) stimulates proliferation of hematopoietic cells of the macrophage and granulocyte lineages and is used clinically to treat neutropenia and other myeloid disorders. Because of its short circulating half-life, GM-CSF is administered to patients by daily injection. We describe here the engineering of highly potent, long-acting human GM-CSF proteins through site-specific modification of GM-CSF cysteine analogues with a cysteine-reactive poly(ethylene glycol) (PEG) reagent. Thirteen cysteine analogues of GM-CSF were constructed, primarily in nonhelical regions of the protein believed to lie away from the major receptor binding sites. The GM-CSF cysteine analogues were properly processed but insoluble following secretion into the Escherichia coli periplasm. The proteins were refolded and purified by column chromatography. Ten of the cysteine analogues could be modified with a 5-kDa maleimide PEG, and seven of the mono-PEGylated proteins were purified by ion-exchange column chromatography. Biological activities of the 13 cysteine analogues and 7 PEGylated cysteine analogues were comparable to that of wild-type GM-CSF in an in vitro cell proliferation assay using human TF-1 cells. One cysteine analogue was modified with larger 10-, 20-, and 40-kDa PEGs, with only minimal loss of in vitro bioactivity. Pharmacokinetic experiments in rats demonstrated that the PEGylated proteins had up to 47-fold longer circulating half-lives than wild-type GM-CSF. These data demonstrate the utility of site-specific PEGylation for creating highly potent, long-acting GM-CSF analogues and provide further evidence that the nonhelical regions of human GM-CSF examined are largely nonessential for biological activity of the protein.


Subject(s)
Cysteine/analogs & derivatives , Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Line , Cysteine/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacokinetics , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Male , Protein Sorting Signals , Rats , Rats, Sprague-Dawley , Recombinant Proteins
6.
Bioconjug Chem ; 16(1): 200-7, 2005.
Article in English | MEDLINE | ID: mdl-15656592

ABSTRACT

Recombinant interferon alpha-2 (IFN-alpha2) is used clinically to treat a variety of viral diseases and cancers. IFN-alpha2 has a short circulating half-life, which necessitates frequent administration to patients. Previous studies showed that it is possible to extend the circulating half-life of IFN-alpha2 by modifying lysine residues of the protein with amine-reactive poly(ethylene glycol) (PEG) reagents. However, amine-PEGylated IFN-alpha2 comprises a heterogeneous product mixture with low specific activity due to the large number and critical locations of lysine residues in IFN-alpha2. In an effort to overcome these problems we determined the feasibility of creating site-specific, mono-PEGylated IFN-alpha2 analogues by introducing a free (unpaired) cysteine residue into the protein, followed by modification of the added cysteine residue with a maleimide-PEG reagent. IFN-alpha2 cysteine analogues were expressed in Escherichia coli and purified, and their in vitro bioactivities were measured in the human Daudi cell line growth inhibition assay. Several cysteine analogues were identified that do not significantly affect in vitro biological activity of IFN-alpha2. Certain of the cysteine analogues, but not wild-type IFN-alpha2, reacted with maleimide-PEG to produce mono-PEGylated proteins. The PEG-Q5C analogue retained high in vitro bioactivity (within 3- to 4-fold of wild-type IFN-alpha2) even when modified with 20- and 40-kDa PEGs. Pharmacokinetic experiments indicated that the 20-kDa PEG-Q5C and 40-kDa PEG-Q5C proteins have 20-fold and 40-fold longer half-lives, respectively, than IFN-alpha2 following subcutaneous administration to rats. These studies demonstrate the feasibility of using site-specific PEGylation technology to create a long-acting, mono-PEGylated IFN-alpha2 protein with high specific activity.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , Polyethylene Glycols/chemistry , Animals , Base Sequence , Binding Sites , Cells, Cultured , Cysteine/chemistry , Dose-Response Relationship, Drug , Escherichia coli/genetics , Humans , Interferon-alpha/chemistry , Lysine/chemistry , Maleimides/chemistry , Maleimides/pharmacology , Molecular Weight , Proteins/chemistry , Rats
8.
Exp Hematol ; 32(5): 441-9, 2004 May.
Article in English | MEDLINE | ID: mdl-15145212

ABSTRACT

OBJECTIVE: The aim of this study was to determine whether fusion proteins comprising human granulocyte colony-stimulating factor (G-CSF) joined to human immunoglobulin G1 and G4 (IgG1 and IgG4) Fc and C(H) domains are biologically active and have improved pharmacokinetic and hematopoietic properties in vivo. MATERIAL AND METHODS: Chimeric genes encoding human G-CSF fused to the N-termini of the Fc and C(H) domains of human IgG1 and IgG4 were constructed and used to transfect monkey COS cells. The fusion proteins were purified from the conditioned media by protein A affinity chromatography. Bioactivities of the proteins were measured in a G-CSF-dependent in vitro bioassay. Pharmacokinetic and granulopoietic properties of the G-CSF/IgG1-Fc fusion protein were measured in normal rats. RESULTS: The G-CSF/IgG-Fc and G-CSF/IgG-C(H) fusion proteins were secreted from transfected COS cells primarily as disulfide-linked homodimers. On a molar basis, the purified G-CSF/IgG-Fc fusion proteins were as active as G-CSF in in vitro bioassays, whereas bioactivities of the purified G-CSF/IgG-C(H) fusion proteins were decreased 3- to 4-fold. The G-CSF/IgG1-Fc fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating neutrophils and white blood cells than G-CSF following intravenous and subcutaneous administration to rats. CONCLUSION: Fusion of G-CSF to human IgG domains results in homodimeric fusion proteins possessing high in vitro bioactivities, long circulating half-lives, and enhanced hematopoietic properties in vivo.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Immunoglobulin G/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Blood Cell Count , Bone Marrow Examination , COS Cells , Granulocyte Colony-Stimulating Factor/blood , Granulocyte Colony-Stimulating Factor/genetics , Half-Life , Humans , Immunoglobulin G/genetics , Leukocytes/cytology , Leukocytes/drug effects , Male , Neutrophils/cytology , Neutrophils/drug effects , Pharmacokinetics , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/blood , Recombinant Fusion Proteins/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...