Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Pharmacol Transl Sci ; 5(4): 255-265, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35434531

ABSTRACT

Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 µM. Among these, four compounds with IC50 values around 1 µM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein-inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.

2.
Inorg Chem ; 55(17): 8321-30, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27500789

ABSTRACT

The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.


Subject(s)
Azotobacter vinelandii/enzymology , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Formates/metabolism , Methane/metabolism , Molybdoferredoxin/metabolism , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Oxidation-Reduction
3.
Science ; 352(6288): 953-8, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27199421

ABSTRACT

Methyl-coenzyme M reductase, the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the biological production of more than 1 billion tons of methane per year. The mechanism of methane synthesis is thought to involve either methyl-nickel(III) or methyl radical/Ni(II)-thiolate intermediates. We employed transient kinetic, spectroscopic, and computational approaches to study the reaction between the active Ni(I) enzyme and substrates. Consistent with the methyl radical-based mechanism, there was no evidence for a methyl-Ni(III) species; furthermore, magnetic circular dichroism spectroscopy identified the Ni(II)-thiolate intermediate. Temperature-dependent transient kinetics also closely matched density functional theory predictions of the methyl radical mechanism. Identifying the key intermediate in methanogenesis provides fundamental insights to develop better catalysts for producing and activating an important fuel and potent greenhouse gas.


Subject(s)
Biocatalysis , Methane/biosynthesis , Methanobacteriaceae/enzymology , Oxidoreductases/chemistry , Catalytic Domain , Enzyme Activation , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Nickel/chemistry , Oxidation-Reduction , Spectrum Analysis/methods , Temperature
4.
J Chem Theory Comput ; 11(4): 1715-24, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-26574382

ABSTRACT

The surface chemistry of metal oxide particles is governed by the charge that develops at the interface with aqueous solution. Mineral transformation, biogeochemical reactions, remediation, and sorption dynamics are profoundly affected in response. Here we report implementation of replica-exchange constant-pH molecular dynamics simulations that use classical molecular dynamics for exploring configurational space and Metropolis Monte Carlo walking through protonation space with a simulated annealing escape route from metastable configurations. By examining the archetypal metal oxide, goethite (α-FeOOH), we find that electrostatic potential gradients spontaneously arise between intersecting low-index crystal faces and across explicitly treated oxide nanoparticles at a magnitude exceeding the Johnson-Nyquist voltage fluctuation. Fluctuations in adsorbed proton density continuously repolarize the surface potential bias between edge-sharing crystal faces, at a rate slower than the reported electron-polaron hopping rate in goethite interiors. This suggests that these spontaneous surface potential fluctuations will control the net movement of charge carriers in the lattice.

5.
Phys Chem Chem Phys ; 16(43): 24026-33, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25285653

ABSTRACT

Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

6.
J Phys Chem B ; 118(29): 8505-12, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24975678

ABSTRACT

The staggered cross decaheme configuration of electron transfer cofactors in the outer-membrane cytochrome MtrF serves as a prototype for conformationally gated multiheme electron transport. Derived from the bacterium Shewanella oneidensis, the staggered cross configuration reveals intersecting c-type octaheme and tetraheme "wires" containing thermodynamic "hills" and "valleys" (Proc. Natl. Acad. Sci. U. S. A. 2014, 11, 611-616), suggesting that the protein structure may include a dynamical mechanism for conductance and pathway switching depending on enzymatic functional need. Here, we applied classical molecular and statistical mechanics calculations of large-amplitude protein dynamics in MtrF, to address its potential to modulate pathway conductance, including assessment of the effect of the total charge state. Explicit solvent molecular dynamics simulations of fully oxidized and fully reduced MtrF showed that the slowest mode of collective decaheme motion is 90% similar between the oxidized and reduced states and consists primarily of interheme separation with minor rotational contributions. The frequency of this motion is 1.7 × 10(7) s(-1), both for fully oxidized and fully reduced MtrF, slower than the downhill electron transfer rates between stacked heme pairs at the octaheme termini and faster than the electron transfer rates between parallel hemes in the tetraheme chain. This implies that MtrF uses slow conformational fluctuations to modulate electron flow along the octaheme pathway, apparently for the purpose of increasing the residence time of electrons on lowest potential hemes 4 and 9. This apparent gating mechanism should increase the success rate of electron transfer from MtrF to low potential environmental acceptors via these two solvent-exposed hemes.


Subject(s)
Cytochromes/chemistry , Cytochromes/metabolism , Heme/metabolism , Molecular Dynamics Simulation , Shewanella/enzymology , Electron Transport , Kinetics , Movement , Protein Conformation , Thermodynamics
7.
Biochemistry ; 53(14): 2278-85, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24654842

ABSTRACT

Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.


Subject(s)
Molecular Dynamics Simulation , Nitrogenase/chemistry , Substrate Specificity
8.
Biophys J ; 103(7): 1576-84, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23062350

ABSTRACT

Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R(2) of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.


Subject(s)
Calmodulin/chemistry , Calmodulin/metabolism , Entropy , Molecular Dynamics Simulation , Peptides/metabolism , Static Electricity , Hydrogen Bonding , Osmolar Concentration , Protein Binding , Protein Structure, Secondary
9.
J Chem Theory Comput ; 8(6): 2103-14, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-26593842

ABSTRACT

Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of Cα and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H2-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

10.
Chem Biol Drug Des ; 74(3): 309-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19703034

ABSTRACT

With cancer-related fatalities being the second leading cause of death in the USA, understanding the activity of effective chemotherapeutic agents is critical to addressing prostate and other cancers. Celecoxib, an FDA-approved drug for the treatment of colon tumors, has been used successfully as a lead compound in the development of antiproliferative agents. The ability of celecoxib to inhibit the development and progression of tumors has been connected to a number of mechanisms of actions that are both dependent on and independent of its cyclooxygenase-2 activity. A structure-based approach has been employed to develop a model that underscores the structural significance of celecoxib as an antiproliferative agent. By evaluating the structure activity of this library of molecules, we were able to create a QSAR model for predicting the antiproliferative activity of structurally similar molecules. The development of the model will be presented in this paper.


Subject(s)
Antineoplastic Agents/chemistry , Pyrazoles/chemistry , Sulfonamides/chemistry , Algorithms , Celecoxib , Colonic Neoplasms/drug therapy , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Linear Models , Quantitative Structure-Activity Relationship
11.
Lett Drug Des Discov ; 5(6): 369-376, 2008.
Article in English | MEDLINE | ID: mdl-25568641

ABSTRACT

PDK1 is pivotal in the development and progression of several cancers. A 3D pharmacophore was developed for pyrazole derivatives displaying anti-proliferative activity and PDK1 inhibition. The pharmacophore was utilized in the design of benzimidazole analogs. Our preliminary results indicate the pharmacophore should be useful in designing PDK1 inhibitors and anti-proliferative agents.

12.
J Phys Chem B ; 110(31): 15582-8, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884282

ABSTRACT

A method for calculating the electron-transfer matrix element V(RP) using density functional theory Kohn-Sham orbitals is presented and applied to heme dimers of varying relative orientation. The electronic coupling decays with increased iron separation according to V(RP) = V(0)(RP)exp(-beta r/2) with a distance dependence parameter beta approximately 2 A(-1) for hemes with parallel porphyrins and either 1.1 or 4.0 A(-1) when the porphyrin planes are perpendicular, depending on the alignment of the iron d(pi) orbital. These findings are used to interpret the observed orientation of the hemes in tetraheme redox proteins such as Flavocytochrome c(3) fumarate reductase (Ifc(3), PDB code 1QJD) of Shewanella frigidimarina, another flavocytochrome from the same bacterium (Fcc(3), 1E39) and a small tetraheme cytochrome of Shewanella oneidensis strain MR1 (1M1P). Our results show that shifting and rotating the hemes controls the adiabaticity of the three electron hopping steps.


Subject(s)
Cytochrome c Group/chemistry , Heme/chemistry , Succinate Dehydrogenase/chemistry , Computer Simulation , Electrons , Models, Chemical , Models, Molecular , Protein Conformation , Quantum Theory , Shewanella/enzymology
13.
J Colloid Interface Sci ; 274(2): 442-50, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15144815

ABSTRACT

The rate of reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution of hematite, especially by iron-reducing bacteria. It is possible that the rate of reductive dissolution of hematite in the presence of excess hydroquinone at pH 2.5 may be limited by the electron-transfer rate. Here, a reductive dissolution rate was measured and compared to electron-transfer rates calculated using Marcus theory. An experimental rate constant was measured at 9.5 x 10 (-6) s(-1) and the reaction order with respect to the hematite concentration was found to be 1.1. Both the dissolution rate and the reaction order of hematite concentration compare well with previous measurements. Of the Marcus theory calculations, the inner-sphere part of the reorganization energy and the electronic coupling matrix element for hydroquinone self-exchange electron transfer are calculated using ab initio methods. The second order self-exchange rate constant was calculated to be 1.3 x 10 (7) M(-1)s(-1), which compares well with experimental measurements. Using previously published data calculated for hexaquairon(III)/(II), the calculated electron-transfer rate for the cross reaction with hydroquinone also compares well to experimental measurements. A hypothetical reductive dissolution rate is calculated using the first-order electron-transfer rate constant and the concentration of total adsorbed quinone. Three different models of the hematite surface are used as well as multiple estimates for the reduction potential, the surface charge, and the adsorption density of hydroquinone. No calculated dissolution rate is less than five orders of magnitude faster than the experimentally measured one.

14.
J Am Chem Soc ; 125(9): 2711-7, 2003 Mar 05.
Article in English | MEDLINE | ID: mdl-12603159

ABSTRACT

Ferric and ferrous hemes, such as those present in electron transfer proteins, often have low-lying spin states that are very close in energy. To explore the relationship between spin state, geometry, and cytochrome electron transfer, we investigate, using density functional theory, the relative energies, electronic structure, and optimized geometries for a high- and low-spin ferric and ferrous heme model complex. Our model consists of an iron-porphyrin axially ligated by two imidazoles, which model the interaction of a heme with histidine residues. Using the B3LYP hybrid functional, we found that, in the ferric model heme complex, the doublet is lower in energy than the sextet by 8.4 kcal/mol and the singlet ferrous heme is 6.7 kcal/mol more stable than the quintet. The difference between the high-spin ferric and ferrous model heme energies yields an adiabatic electron affinity (AEA) of 5.24 eV, and the low-spin AEA is 5.17 eV. Both values are large enough to ensure electron trapping, and electronic structure analysis indicates that the iron d(pi) orbital is involved in the electron transfer between hemes. Mössbauer parameters calculated to verify the B3LYP electronic structure correlate very well with experimental values. Isotropic hyperfine coupling constants for the ligand nitrogen atoms were also evaluated. The optimized geometries of the ferric and ferrous hemes are consistent with structures from X-ray crystallography and reveal that the iron-imidazole distances are significantly longer in the high-spin hemes, which suggests that the protein environment, modeled here by the imidazoles, plays an important role in regulating the spin state. Iron-imidazole dissociation energies, force constants, and harmonic frequencies were calculated for the ferric and ferrous low-spin and high-spin hemes. In both the ferric and the ferrous cases, a single imidazole ligand is more easily dissociated from the high-spin hemes.


Subject(s)
Hemeproteins/chemistry , Histidine/chemistry , Imidazoles/chemistry , Iron/chemistry , Models, Molecular , Spectroscopy, Mossbauer , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...