Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Bacteriol ; : e0041323, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874341

ABSTRACT

Many bacteria build elaborate molecular machines to import DNA via natural competence, yet this activity is often not identified until strains have been handled and domesticated in laboratory settings. For example, one of the best studied Gram-positive model organisms, Bacillus subtilis, has a poorly transformable ancestor. Transformation in the ancestral strain is inhibited by a transmembrane peptide, ComI, which is encoded on an extrachromosomal plasmid. Although ComI was shown to be necessary and sufficient to inhibit transformation when produced at high levels under an inducible promoter, the mechanism by which ComI inhibits transformation is unknown. Here, we examine the native regulation and mechanism of transformation inhibition by ComI. We find that under native regulation, ComI expression is restricted in the absence of the plasmid. In the presence of the plasmid, we find that ComI is expressed at higher levels in cells that are differentiating into a competent state. The subcellular localization of ComI, however, does not depend on any other competence proteins, and permeabilization activity is concentration-dependent. Time-lapse microscopy reveals that competent cells producing ComI are first permeabilized and then die. Based on these observations, we propose a new model for the mechanism of ComI in which response to competence activation leads to selective elimination of the competent subpopulation. IMPORTANCE: Natural transformation mechanisms have been studied across several bacterial systems, but few examples of inhibition exist. This work investigates the mechanism of action of a plasmid-encoded transmembrane inhibitor of natural transformation. The data reveal that the peptide can cause cell permeabilization. Permeabilization is synergistic with entry of Bacillus subtilis into the "competent" state, such that cells with the ability to be transformed are preferentially killed. These findings reveal a self-preservation mechanism coupled to the physiological state of the cells that ensures that the population can maintain an unaltered plasmid and its predicted prophage.

2.
Pain ; 165(1): 92-101, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37463227

ABSTRACT

ABSTRACT: Neuropathic pain is a critical source of comorbidity following spinal cord injury (SCI) that can be exacerbated by immune-mediated pathologies in the central and peripheral nervous systems. In this article, we investigate whether drug-free, biodegradable, poly(lactide- co -glycolide) (PLG) nanoparticle treatment mitigates the development of post-SCI neuropathic pain in female mice. Our results show that acute treatment with PLG nanoparticles following thoracic SCI significantly reduces tactile and cold hypersensitivity scores in a durable fashion. Nanoparticles primarily reduce peripheral immune-mediated mechanisms of neuropathic pain, including neuropathic pain-associated gene transcript frequency, transient receptor potential ankyrin 1 nociceptor expression, and MCP-1 (CCL2) chemokine production in the subacute period after injury. Altered central neuropathic pain mechanisms during this period are limited to reduced innate immune cell cytokine expression. However, in the chronic phase of SCI, nanoparticle treatment induces changes in both central and peripheral neuropathic pain signaling, driving reductions in cytokine production and other immune-relevant markers. This research suggests that drug-free PLG nanoparticles reprogram peripheral proalgesic pathways subacutely after SCI to reduce neuropathic pain outcomes and improve chronic central pain signaling.


Subject(s)
Neuralgia , Spinal Cord Injuries , Female , Mice , Animals , Hyperalgesia/metabolism , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism , Neuralgia/drug therapy , Neuralgia/etiology , Neuralgia/metabolism , Cytokines/metabolism , Spinal Cord/metabolism
3.
Biotechnol Bioeng ; 118(7): 2609-2625, 2021 07.
Article in English | MEDLINE | ID: mdl-33835500

ABSTRACT

A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.


Subject(s)
Cell Differentiation , Hydrogels/chemistry , Interleukin-10 , Lentivirus , Neural Stem Cells/metabolism , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Cell Survival , Interleukin-10/biosynthesis , Interleukin-10/genetics , Mice , Mice, Transgenic , Neural Stem Cells/pathology , Neurons/pathology , Spinal Cord/pathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
4.
ACS Biomater Sci Eng ; 6(10): 5771-5784, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320551

ABSTRACT

An important role of neural stem cell transplantation is repopulating neural and glial cells that actively promote repair following spinal cord injury (SCI). However, stem cell survival after transplantation is severely hampered by the inflammatory environment that arises after SCI. Biomaterials have a demonstrated history of managing post-SCI inflammation and can serve as a vehicle for stem cell delivery. In this study, we utilize macroporous polyethylene glycol (PEG) tubes, which were previously found to modulate the post-SCI microenvironment, to serve as a viable, soft substrate for injecting mouse embryonic day 14 (E14) spinal progenitors 2 weeks after tube implantation into a mouse SCI model. At 2 weeks after transplantation (4 weeks after injury), 4.3% of transplanted E14 spinal progenitors survived when transplanted directly into tubes compared to 0.7% when transplanted into the injury alone. Surviving E14 spinal progenitors exhibited a commitment to the neuronal lineage at 4 weeks post-injury, as assessed by both early and late phenotypic markers. Mice receiving tubes with E14 spinal progenitor transplantations had on average 21 ± 4 axons/mm2 regenerated compared to 8 ± 1 axons/mm2 for the injury only control, which corresponded with a significant increase in remyelination compared to the injury only control, while all conditions exhibited improved forelimb control 4 weeks after injury compared to the injury only. Collectively, we have demonstrated the feasibility of using PEG tubes to modify the implantation site and improve survival of transplanted E14 spinal progenitors.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Animals , Axons , Hydrogels , Mice , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation
5.
Laryngoscope ; 130(12): 2802-2810, 2020 12.
Article in English | MEDLINE | ID: mdl-32220076

ABSTRACT

OBJECTIVES/HYPOTHESIS: Facial nerve injury is a source of major morbidity. This study investigated the neuroregenerative effects of inducing an anti-inflammatory environment when reconstructing a facial nerve defect with a multichannel bridge containing interleukin-4 (IL-4)-encoding lentivirus. STUDY DESIGN: Animal study. METHODS: Eighteen adult Sprague-Dawley rats were divided into three groups, all of which sustained a facial nerve gap defect. Group I had reconstruction performed via an IL-4 multichannel bridge, group II had a multichannel bridge with saline placed, and group III had no reconstruction. RESULTS: Quantitative histomorphometric data were assessed 10 weeks after injury. On post hoc analysis, the IL-4 bridge group demonstrated superior regeneration compared to bridge alone on fiber density (mean = 2,380 ± 297 vs. 1,680 ± 441 fibers/mm2 , P = .05) and latency time (mean = 2.9 ms ± 0.6 ms vs. 3.6 ms ± 0.3 ms, P < .001). There was significantly greater regeneration in the IL-4 bridge group versus unreconstructed defect for total fiber and density measurements (P ≤ .05). Comparison of facial motor-evoked distal latencies between the IL-4 bridge group versus bridge alone revealed significant electrophysiological improvement at week 8 (P = .02). CONCLUSIONS: Inflammation has been implicated in a variety of otolaryngologic disorders. This study demonstrates that placement of a multichannel bridge with lentivirus encoding IL-4 improves regenerative outcomes following facial nerve gap injury in rodents. This effect is likely mediated by promotion of an anti-inflammatory environment, and these findings may inform future therapeutic approaches to facial nerve injury. LEVEL OF EVIDENCE: NA Laryngoscope, 2020.


Subject(s)
Facial Nerve Injuries/surgery , Interleukin-4 , Nerve Regeneration/physiology , Plastic Surgery Procedures/methods , Animals , Disease Models, Animal , Lentivirus , Rats , Rats, Sprague-Dawley
6.
Tissue Eng Part A ; 26(11-12): 672-682, 2020 06.
Article in English | MEDLINE | ID: mdl-32000627

ABSTRACT

One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects.


Subject(s)
Interleukin-10/physiology , Nerve Growth Factors/physiology , Nerve Regeneration/physiology , Animals , Blotting, Western , Female , Immunohistochemistry , Interleukin-10/genetics , Locomotion , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Nerve Growth Factors/genetics , Nerve Regeneration/genetics , Oligodendroglia/metabolism , Receptor, EphB3/metabolism , Spinal Cord Injuries
7.
ACS Biomater Sci Eng ; 5(12): 6679-6690, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33423486

ABSTRACT

Spinal cord injury (SCI) is a devastating condition that may cause permanent functional loss below the level of injury, including paralysis and loss of bladder, bowel, and sexual function. Patients are rarely treated immediately, and this delay is associated with tissue loss and scar formation that can make regeneration at chronic time points more challenging. Herein, we investigated regeneration using a poly(lactide-co-glycolide) multichannel bridge implanted into a chronic SCI following surgical resection of necrotic tissue. We characterized the dynamic injury response and noted that scar formation decreased at 4 and 8 weeks postinjury (wpi), yet macrophage infiltration increased between 4 and 8 wpi. Subsequently, the scar tissue was resected and bridges were implanted at 4 and 8 wpi. We observed robust axon growth into the bridge and remyelination at 6 months after initial injury. Axon densities were increased for 8 week bridge implantation relative to 4 week bridge implantation, whereas greater myelination, particularly by Schwann cells, was observed with 4 week bridge implantation. The process of bridge implantation did not significantly decrease the postinjury function. Collectively, this chronic model follows the pathophysiology of human SCI, and bridge implantation allows for clear demarcation of the regenerated tissue. These data demonstrate that bridge implantation into chronic SCI supports regeneration and provides a platform to investigate strategies to buttress and expand regeneration of neural tissue at chronic time points.

8.
Biotechnol Bioeng ; 116(1): 155-167, 2019 01.
Article in English | MEDLINE | ID: mdl-30229864

ABSTRACT

Spinal cord injury (SCI) results in paralysis below the injury and strategies are being developed that support axonal regrowth, yet recovery lags, in part, because many axons are not remyelinated. Herein, we investigated strategies to increase myelination of regenerating axons by overexpression of platelet-derived growth factor (PDGF)-AA and noggin either alone or in combination in a mouse SCI model. Noggin and PDGF-AA have been identified as factors that enhance recruitment and differentiation of endogenous progenitors to promote myelination. Lentivirus encoding for these factors was delivered from a multichannel bridge, which we have previously shown creates a permissive environment and supports robust axonal growth through channels. The combination of noggin+PDGF enhanced total myelination of regenerating axons relative to either factor alone, and importantly, enhanced functional recovery relative to the control condition. The increase in myelination was consistent with an increase in oligodendrocyte-derived myelin, which was also associated with a greater density of cells of an oligodendroglial lineage relative to each factor individually and control conditions. These results suggest enhanced myelination of regenerating axons by noggin+PDGF that act on oligodendrocyte-lineage cells post-SCI, which ultimately led to improved functional outcomes.


Subject(s)
Carrier Proteins/administration & dosage , Genetic Therapy/methods , Myelin Sheath/drug effects , Nerve Regeneration , Platelet-Derived Growth Factor/administration & dosage , Regenerative Medicine/methods , Spinal Cord Injuries/therapy , Animals , Carrier Proteins/genetics , Disease Models, Animal , Drug Carriers/administration & dosage , Genetic Vectors , Lentivirus/genetics , Mice , Platelet-Derived Growth Factor/genetics , Treatment Outcome
9.
J Control Release ; 290: 88-101, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30296461

ABSTRACT

Recently, many clinical trials have challenged the efficacy of current therapeutics for neuropathic pain after spinal cord injury (SCI) due to their life-threatening side-effects including addictions. Growing evidence suggests that persistent inflammatory responses after primary SCI lead to an imbalance between anti-inflammation and pro-inflammation, resulting in pathogenesis and maintenance of neuropathic pain. Conversely, a variety of data suggest that inflammation contributes to regeneration. Herein, we investigated long-term local immunomodulation using anti-inflammatory cytokine IL-10 or IL-4-encoding lentivirus delivered from multichannel bridges. Multichannel bridges provide guidance for axonal outgrowth and act as delivery vehicles. Anti-inflammatory cytokines were hypothesized to modulate the pro-nociceptive inflammatory niche and promote axonal regeneration, leading to neuropathic pain attenuation. Gene expression analyses demonstrated that IL-10 and IL-4 decreased pro-nociceptive genes expression versus control. Moreover, these factors resulted in an increased number of pro-regenerative macrophages and restoration of normal nociceptors expression pattern. Furthermore, the combination of bridges with anti-inflammatory cytokines significantly alleviated both mechanical and thermal hypersensitivity relative to control and promoted axonal regeneration. Collectively, these studies highlight that immunomodulatory strategies target multiple barriers to decrease secondary inflammation and attenuate neuropathic pain after SCI.


Subject(s)
Hyperalgesia/therapy , Interleukin-10/genetics , Interleukin-4/genetics , Lentivirus/genetics , Neuralgia/therapy , Spinal Cord Injuries/therapy , Animals , Female , Genetic Vectors , Immunomodulation , Interleukin-10/immunology , Interleukin-4/immunology , Mice, Inbred C57BL , Neuralgia/immunology , Spinal Cord Injuries/immunology
10.
Mol Ther ; 26(7): 1756-1770, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29778523

ABSTRACT

Trauma to the spinal cord and associated secondary inflammation can lead to permanent loss of sensory and motor function below the injury level, with the resulting environment serving as a barrier that limits regeneration. In this study, we investigate the localized expression of anti-inflammatory cytokines IL-10 and IL-4 via lentiviral transduction in multichannel bridges. Porous multichannel bridges provide physical guidance for axonal outgrowth with the cytokines hypothesized to modulate the neuroinflammatory microenvironment and enhance axonal regeneration. Gene expression analyses indicated that induced IL-10 and IL-4 expression decreased expression of pro-inflammatory genes and increased pro-regenerative genes relative to control. Moreover, these factors led to increased numbers of axons and myelination, with approximately 45% of axons myelinated and the number of oligodendrocyte myelinated axons significantly increased by 3- to 4-fold. Furthermore, the combination of a bridge with IL-10 and IL-4 expression improved locomotor function after injury to an average score of 6 relative to an average score of 3 for injury alone. Collectively, these studies highlight the potential for localized immunomodulation to decrease secondary inflammation and enhance regeneration that may have numerous applications.


Subject(s)
Anti-Inflammatory Agents/metabolism , Cytokines/metabolism , Immunomodulation/physiology , Lentivirus/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/therapy , Animals , Axons/metabolism , Axons/physiology , Cell Line , Female , HEK293 Cells , Humans , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Myelin Sheath/physiology , Nerve Regeneration/physiology , Oligodendroglia/metabolism , Oligodendroglia/physiology , Spinal Cord/metabolism , Spinal Cord/physiology , Spinal Cord Injuries/metabolism
11.
Bioeng Transl Med ; 1(2): 136-148, 2016 06.
Article in English | MEDLINE | ID: mdl-27981242

ABSTRACT

The spinal cord is unable to regenerate after injury largely due to growth-inhibition by an inflammatory response to the injury that fails to resolve, resulting in secondary damage and cell death. An approach that prevents inhibition by attenuating the inflammatory response and promoting its resolution through the transition of macrophages to anti-inflammatory phenotypes is essential for the creation of a growth permissive microenvironment. Viral gene delivery to induce the expression of anti-inflammatory factors provides the potential to provide localized delivery to alter the host inflammatory response. Initially, we investigated the effect of the biomaterial and viral components of the delivery system to influence the extent of cell infiltration and the phenotype of these cells. Bridge implantation reduces antigen-presenting cell infiltration at day 7, and lentivirus addition to the bridge induces a transient increase in neutrophils in the spinal cord at day 7 and macrophages at day 14. Delivery of a lentivirus encoding IL-10, an anti-inflammatory factor that inhibits immune cell activation and polarizes the macrophage population towards anti-inflammatory phenotypes, reduced neutrophil infiltration at both day 7 and day 28. Though IL-10 lentivirus did not affect macrophages number, it skewed the macrophage population toward an anti-inflammatory M2 phenotype and altered macrophage morphology. Additionally, IL-10 delivery resulted in improved motor function, suggesting reduced secondary damage and increased sparing. Taken together, these results indicate that localized expression of anti-inflammatory factors, such as IL-10, can modulate the inflammatory response following spinal cord injury, and may be a key component of a combinatorial approach that targets the multiple barriers to regeneration and functional recovery.

12.
J Neurosci Methods ; 263: 15-22, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26820904

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a debilitating event with multiple mechanisms of degeneration leading to life-long paralysis. Biomaterial strategies, including bridges that span the injury and provide a pathway to reconnect severed regions of the spinal cord, can promote partial restoration of motor function following SCI. Axon growth through the bridge is essential to characterizing regeneration, as recovery can occur via other mechanisms such as plasticity. Quantitative analysis of axons by manual counting of histological sections can be slow, which can limit the number of bridge designs evaluated. In this study, we report a semi-automated process to resolve axon numbers in histological sections, which allows for efficient analysis of large data sets. NEW METHOD: Axon numbers were estimated in SCI cross-sections from animals implanted with poly(lactide co-glycolide) (PLG) bridges with multiple channels for guiding axons. Immunofluorescence images of histological sections were filtered using a Hessian-based approach prior to threshold detection to improve the signal-to-noise ratio and filter out background staining associated with PLG polymer. RESULTS: Semi-automated counting successfully recapitulated average axon densities and myelination in a blinded PLG bridge implantation study. COMPARISON WITH EXISTING METHODS: Axon counts obtained with the semi-automated technique correlated well with manual axon counts from blinded independent observers across sections with a wide range of total axons. CONCLUSIONS: This semi-automated detection of Hessian-filtered axons provides an accurate and significantly faster alternative to manual counting of axons for quantitative analysis of regeneration following SCI.


Subject(s)
Axons/physiology , Biocompatible Materials/therapeutic use , Electronic Data Processing , Lactic Acid/therapeutic use , Nerve Regeneration/physiology , Polyglycolic Acid/therapeutic use , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery , Analysis of Variance , Animals , Axons/pathology , Axons/ultrastructure , Female , Mice , Mice, Inbred C57BL , Microscopy, Electron , Myelin Basic Protein/metabolism , Neurofilament Proteins/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL
...