Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17648, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848450

ABSTRACT

Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events. Using proximity labelling, we identified OST48 as a protein that transiently interacts with lysyl oxidase (LOX), a secreted enzyme that cross-links the fibrous extracellular matrix. OST48 is a non-catalytic component of the oligosaccharyltransferase (OST) complex, which transfers glycans to substrate proteins. OST48 is encoded by DDOST, and 43 variants of DDOST are described in CDG patients, of which 34 are classified as variants of uncertain clinical significance (VUS). We developed an assay based on LOX N-glycosylation that confirmed two previously characterised DDOST variants as pathogenic. Notably, 39 of the 41 remaining variants did not have impaired activity, but we demonstrated that p.S243F and p.E286del were functionally impaired, consistent with a role in driving CDG in those patients. Thus, we describe a rapid assay for functional testing of clinically relevant CDG variants to complement genome sequencing and support clinical diagnosis of affected individuals.


Subject(s)
Congenital Disorders of Glycosylation , Humans , Glycosylation , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Clinical Relevance , Base Sequence , Membrane Proteins/genetics , Membrane Proteins/metabolism
2.
Nat Mater ; 21(1): 110-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34518665

ABSTRACT

Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness-a hallmark of pancreatic cancer-was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/metabolism , Animals , Extracellular Matrix , Humans , Hydrogels/metabolism , Mice , Organoids , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment
3.
Cell Rep ; 22(13): 3641-3659, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590629

ABSTRACT

Pharmacologic inhibition of LSD1 promotes blast cell differentiation in acute myeloid leukemia (AML) with MLL translocations. The assumption has been that differentiation is induced through blockade of LSD1's histone demethylase activity. However, we observed that rapid, extensive, drug-induced changes in transcription occurred without genome-wide accumulation of the histone modifications targeted for demethylation by LSD1 at sites of LSD1 binding and that a demethylase-defective mutant rescued LSD1 knockdown AML cells as efficiently as wild-type protein. Rather, LSD1 inhibitors disrupt the interaction of LSD1 and RCOR1 with the SNAG-domain transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation. Physical separation of LSD1/RCOR1 from GFI1 is required for drug-induced differentiation. The consequent inactivation of GFI1 leads to increased enhancer histone acetylation within hours, which directly correlates with the upregulation of nearby subordinate genes.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Transcription Factors/antagonists & inhibitors , Cell Differentiation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Cell Biol ; 216(9): 2795-2812, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28774892

ABSTRACT

The fission yeast scaffold molecule Sid4 anchors the septum initiation network to the spindle pole body (SPB, centrosome equivalent) to control mitotic exit events. A second SPB-associated scaffold, Cut12, promotes SPB-associated Cdk1-cyclin B to drive mitotic commitment. Signals emanating from each scaffold have been assumed to operate independently to promote two distinct outcomes. We now find that signals from Sid4 contribute to the Cut12 mitotic commitment switch. Specifically, phosphorylation of Sid4 by NIMAFin1 reduces Sid4 affinity for its SPB anchor, Ppc89, while also enhancing Sid4's affinity for casein kinase 1δ (CK1δ). The resulting phosphorylation of Sid4 by the newly docked CK1δ recruits Chk2Cds1 to Sid4. Chk2Cds1 then expels the Cdk1-cyclin B antagonistic phosphatase Flp1/Clp1 from the SPB. Flp1/Clp1 departure can then support mitotic commitment when Cdk1-cyclin B activation at the SPB is compromised by reduction of Cut12 function. Such integration of signals emanating from neighboring scaffolds shows how centrosomes/SPBs can integrate inputs from multiple pathways to control cell fate.


Subject(s)
Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Mitosis , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Spindle Pole Bodies/metabolism , Binding Sites , Casein Kinase Idelta/genetics , Casein Kinase Idelta/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Cyclin B/genetics , Cyclin B/metabolism , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Mutation , NIMA-Related Kinase 1/genetics , NIMA-Related Kinase 1/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction , Spindle Pole Bodies/genetics , Time Factors
5.
Front Microbiol ; 7: 1086, 2016.
Article in English | MEDLINE | ID: mdl-27462310

ABSTRACT

The plasma membrane represents a critical interface between the internal and extracellular environments, and harbors multiple proteins key receptors and transporters that play important roles in restriction of intracellular infection. We applied plasma membrane profiling, a technique that combines quantitative mass spectrometry with selective cell surface aminooxy-biotinylation, to Bacille Calmette-Guérin (BCG)-infected THP-1 macrophages. We quantified 559 PM proteins in BCG-infected THP-1 cells. One significantly upregulated cell-surface protein was the cholesterol transporter ABCA1. We showed that ABCA1 was upregulated on the macrophage cell-surface following infection with pathogenic mycobacteria and knockdown of ABCA1 resulted in increased mycobacterial survival within macrophages, suggesting that it may be a novel mycobacterial host-restriction factor.

6.
PLoS One ; 10(11): e0142674, 2015.
Article in English | MEDLINE | ID: mdl-26560143

ABSTRACT

Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.


Subject(s)
Colorectal Neoplasms/metabolism , GTP Phosphohydrolases/chemistry , Gene Expression Regulation, Neoplastic , Genes, ras , Membrane Proteins/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Amino Acids/chemistry , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Humans , Mass Spectrometry , Mutation , Protein Isoforms/chemistry , Proteomics , Signal Transduction , Tandem Mass Spectrometry
7.
Aging (Albany NY) ; 7(10): 816-38, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26539730

ABSTRACT

Cancer cells grow in highly complex stromal microenvironments, which through metabolic remodelling, catabolism, autophagy and inflammation nurture them and are able to facilitate metastasis and resistance to therapy. However, these changes in the metabolic profile of stromal cancer-associated fibroblasts and their impact on cancer initiation, progression and metastasis are not well-known. This is the first study to provide a comprehensive proteomic portrait of the azathioprine and taxol-induced catabolic state on human stromal fibroblasts, which comprises changes in the expression of metabolic enzymes, myofibroblastic differentiation markers, antioxidants, proteins involved in autophagy, senescence, vesicle trafficking and protein degradation, and inducers of inflammation. Interestingly, many of these features are major contributors to the aging process. A catabolic stroma signature, generated with proteins found differentially up-regulated in taxol-treated fibroblasts, strikingly correlates with recurrence, metastasis and poor patient survival in several solid malignancies. We therefore suggest the inhibition of the catabolic state in healthy cells as a novel approach to improve current chemotherapy efficacies and possibly avoid future carcinogenic processes.


Subject(s)
Antineoplastic Agents/pharmacology , Azathioprine/pharmacology , Biomarkers, Tumor/metabolism , Fibroblasts/metabolism , Paclitaxel/pharmacology , Antioxidants/metabolism , Autophagy , Cell Differentiation , Cells, Cultured , Cellular Senescence , Disease-Free Survival , Fibroblasts/drug effects , Humans , Neoplasm Metastasis , Neoplasm Recurrence, Local/metabolism , Proteomics , Stress, Physiological , Tumor Microenvironment
8.
Oncotarget ; 6(31): 30453-71, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26421711

ABSTRACT

Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/ß-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.


Subject(s)
Biomarkers, Tumor/physiology , Breast Neoplasms/pathology , Fibroblast Growth Factor 3/biosynthesis , Mitochondria/physiology , Wnt1 Protein/biosynthesis , Culture Media, Conditioned/pharmacology , Female , Fibroblast Growth Factor 3/metabolism , Humans , MCF-7 Cells , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Models, Biological , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Spheroids, Cellular/cytology , Tumor Cells, Cultured , Wnt Signaling Pathway/physiology , Wnt1 Protein/metabolism
9.
Oncotarget ; 6(26): 21892-905, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26323205

ABSTRACT

Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(-) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer cells. Based on our proteomics and functional analysis, FDA-approved inhibitors of protein synthesis and/or mitochondrial biogenesis, may represent novel treatment options for targeting these anabolic stem-like cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Telomerase/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Mitochondria/genetics , Proteomics/methods , Telomerase/genetics , Up-Regulation
10.
Oncotarget ; 6(16): 14005-25, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26087309

ABSTRACT

DNA-PK is an enzyme that is required for proper DNA-repair and is thought to confer radio-resistance in cancer cells. As a consequence, it is a high-profile validated target for new pharmaceutical development. However, no FDA-approved DNA-PK inhibitors have emerged, despite many years of drug discovery and lead optimization. This is largely because existing DNA-PK inhibitors suffer from poor pharmacokinetics. They are not well absorbed and/or are unstable, with a short plasma half-life. Here, we identified the first FDA-approved DNA-PK inhibitor by "chemical proteomics". In an effort to understand how doxycycline targets cancer stem-like cells (CSCs), we serendipitously discovered that doxycycline reduces DNA-PK protein expression by nearly 15-fold (> 90%). In accordance with these observations, we show that doxycycline functionally radio-sensitizes breast CSCs, by up to 4.5-fold. Moreover, we demonstrate that DNA-PK is highly over-expressed in both MCF7- and T47D-derived mammospheres. Interestingly, genetic or pharmacological inhibition of DNA-PK in MCF7 cells is sufficient to functionally block mammosphere formation. Thus, it appears that active DNA-repair is required for the clonal expansion of CSCs. Mechanistically, doxycycline treatment dramatically reduced the oxidative mitochondrial capacity and the glycolytic activity of cancer cells, consistent with previous studies linking DNA-PK expression to the proper maintenance of mitochondrial DNA integrity and copy number. Using a luciferase-based assay, we observed that doxycycline treatment quantitatively reduces the anti-oxidant response (NRF1/2) and effectively blocks signaling along multiple independent pathways normally associated with stem cells, including STAT1/3, Sonic Hedgehog (Shh), Notch, WNT and TGF-beta signaling. In conclusion, we propose that the efficacy of doxycycline as a DNA-PK inhibitor should be tested in Phase-II clinical trials, in combination with radio-therapy. Doxycycline has excellent pharmacokinetics, with nearly 100% oral absorption and a long serum half-life (18-22 hours), at a standard dose of 200-mg per day. In further support of this idea, we show that doxycycline effectively inhibits the mammosphere-forming activity of primary breast cancer samples, derived from metastatic disease sites (pleural effusions or ascites fluid). Our results also have possible implications for the radio-therapy of brain tumors and/or brain metastases, as doxycycline is known to effectively cross the blood-brain barrier. Further studies will be needed to determine if other tetracycline family members also confer radio-sensitivity.


Subject(s)
Breast Neoplasms/radiotherapy , DNA-Activated Protein Kinase/antagonists & inhibitors , Doxycycline/pharmacology , Neoplastic Stem Cells/radiation effects , Radiation-Sensitizing Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Down-Regulation/drug effects , Female , Humans , MCF-7 Cells , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Proteomics/methods
11.
Oncotarget ; 6(17): 14777-95, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26087310

ABSTRACT

Here, we show that new mitochondrial biogenesis is required for the anchorage independent survival and propagation of cancer stem-like cells (CSCs). More specifically, we used the drug XCT790 as an investigational tool, as it functions as a specific inhibitor of the ERRα-PGC1 signaling pathway, which governs mitochondrial biogenesis. Interestingly, our results directly demonstrate that XCT790 efficiently blocks both the survival and propagation of tumor initiating stem-like cells (TICs), using the MCF7 cell line as a model system. Mechanistically, we show that XCT790 suppresses the activity of several independent signaling pathways that are normally required for the survival of CSCs, such as Sonic hedgehog, TGFß-SMAD, STAT3, and Wnt signaling. We also show that XCT790 markedly reduces oxidative mitochondrial metabolism (OXPHOS) and that XCT790-mediated inhibition of CSC propagation can be prevented or reversed by Acetyl-L-Carnitine (ALCAR), a mitochondrial fuel. Consistent with our findings, over-expression of ERRα significantly enhances the efficiency of mammosphere formation, which can be blocked by treatment with mitochondrial inhibitors. Similarly, mammosphere formation augmented by FOXM1, a downstream target of Wnt/ß-catenin signaling, can also be blocked by treatment with three different classes of mitochondrial inhibitors (XCT790, oligomycin A, or doxycycline). In this context, our unbiased proteomics analysis reveals that FOXM1 drives the expression of >90 protein targets associated with mitochondrial biogenesis, glycolysis, the EMT and protein synthesis in MCF7 cells, processes which are characteristic of an anabolic CSC phenotype. Finally, doxycycline is an FDA-approved antibiotic, which is very well-tolerated in patients. As such, doxycycline could be re-purposed clinically as a 'safe' mitochondrial inhibitor, to target FOXM1 and mitochondrial biogenesis in CSCs, to prevent tumor recurrence and distant metastasis, thereby avoiding patient relapse.


Subject(s)
Cell Proliferation/physiology , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Organelle Biogenesis , Acetylcarnitine/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Chromatography, Liquid , Doxycycline/pharmacology , Forkhead Box Protein M1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glycolysis/drug effects , Humans , MCF-7 Cells , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Nitriles/pharmacology , Oligomycins/pharmacology , Oxidative Phosphorylation/drug effects , Proteomics/methods , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Tandem Mass Spectrometry , Thiazoles/pharmacology , Wnt Signaling Pathway/drug effects , ERRalpha Estrogen-Related Receptor
12.
Oncotarget ; 6(7): 4585-601, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25671304

ABSTRACT

We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than "bulk" cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to the inhibition of protein synthesis, using multiple independent approaches. Our findings have important clinical implications, since they may also explain the positive therapeutic effects of PI3-kinase inhibitors and AKT inhibitors, as they ultimately converge on mTOR signaling and would block protein synthesis. We conclude that inhibition of mRNA translation by pharmacological or protein/methionine restriction may be effective strategies for eliminating TICs. Our data also indicate a novel mechanism by which caloric/protein restriction may reduce tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells.


Subject(s)
Biomimetics , Caloric Restriction , Neoplastic Stem Cells/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Female , Humans , Immunosuppressive Agents/pharmacology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Puromycin/pharmacology , Sirolimus/pharmacology , Tumor Cells, Cultured
13.
Nature ; 517(7532): 94-98, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25487150

ABSTRACT

The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.


Subject(s)
Mitosis , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/enzymology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , CDC2 Protein Kinase/metabolism , Chromosome Segregation , Conserved Sequence , Cyclin B/metabolism , Enzyme Activation , HeLa Cells , Holoenzymes/metabolism , Humans , Isoenzymes/metabolism , Molecular Sequence Data , Phosphorylation , Protein Phosphatase 2/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction
14.
Oncotarget ; 5(22): 11029-37, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-25415228

ABSTRACT

Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.


Subject(s)
Breast Neoplasms/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Symporters/antagonists & inhibitors , Thiophenes/pharmacology , Uracil/analogs & derivatives , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proteomics/methods , Uracil/pharmacology
15.
J Cell Biol ; 205(6): 847-62, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24958774

ABSTRACT

The regulated turnover of endoplasmic reticulum (ER)-resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture-based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover.


Subject(s)
Aspartic Acid Endopeptidases/physiology , Membrane Proteins/metabolism , HeLa Cells , Heme Oxygenase-1/metabolism , Humans , Protein Structure, Tertiary , Proteolysis , Proteomics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Ubiquitination
16.
Nat Commun ; 5: 3947, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24853205

ABSTRACT

Non-coding RNAs (ncRNAs) are frequent and prevalent across the taxa. Although individual non-coding loci have been assigned a function, most are uncharacterized. Their global biological significance is unproven and remains controversial. Here we investigate the role played by ncRNAs in the stress response of Schizosaccharomyces pombe. We integrate global proteomics and RNA sequencing data to identify a systematic programme in which elevated antisense RNA arising both from ncRNAs and from 3'-overlapping convergent gene pairs is directly associated with substantial reductions in protein levels throughout the genome. We describe an extensive array of ncRNAs with trans associations that have the potential to influence multiple pathways. Deletion of one such locus reduces levels of atf1, a transcription factor downstream of the stress-activated mitogen-activated protein kinase (MAPK) pathway, and alters sensitivity to oxidative stress. These non-coding transcripts therefore regulate specific stress responses, adding unanticipated information-processing capacity to the MAPK signalling system.


Subject(s)
RNA, Fungal/genetics , RNA, Untranslated/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Open Reading Frames/genetics , Osmotic Pressure , Oxidative Stress/genetics , Proteome/metabolism , RNA, Antisense/metabolism , RNA, Fungal/metabolism , RNA, Untranslated/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcriptome/genetics
17.
J Am Soc Mass Spectrom ; 25(5): 767-77, 2014 May.
Article in English | MEDLINE | ID: mdl-24549895

ABSTRACT

Protein modification by ubiquitination and SUMOylation occur throughout the cell and are responsible for numerous cellular functions such as apoptosis, DNA replication and repair, and gene transcription. Current methods for the identification of such modifications using mass spectrometry predominantly rely upon tryptic isopeptide tag generation followed by database searching with in vitro genetic mutation of SUMO routinely required. We have recently described a novel approach to ubiquitin and SUMO modification detection based upon the diagnostic a' and b' ions released from the isopeptide tags upon collision-induced dissociation of reductively methylated Ubl isopeptides (RUbI) using formaldehyde. Here, we significantly extend those studies by combining data-independent acquisition (DIA) with alternative labeling reagents to improve diagnostic ion coverage and enable relative quantification of modified peptides from both MS and MS/MS signals. Model synthetic ubiquitin and SUMO-derived isopeptides were labeled with mTRAQ reagents (Δ0, Δ4, and Δ8) and subjected to LC-MS/MS with SWATH acquisition. Novel diagnostic ions were generated upon CID, which facilitated the selective detection of these modified peptides. Simultaneous MS-based and MS/MS-based relative quantification was demonstrated for both Ub and SUMO-derived isopeptides across three channels in a background of mTRAQ-labeled Escherichia coli digest.


Subject(s)
Models, Molecular , Peptides/chemistry , Ubiquitinated Proteins/chemistry , Analytic Sample Preparation Methods , Chromatography, High Pressure Liquid , Electrochemical Techniques , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Isotope Labeling , Mass Spectrometry , Oligopeptides/chemistry , Oligopeptides/metabolism , Peptides/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Signal Processing, Computer-Assisted , Sumoylation , Tandem Mass Spectrometry , Ubiquitinated Proteins/metabolism
18.
J Cell Biol ; 203(4): 595-604, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24247430

ABSTRACT

TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to reduce activity. A T1972A mutation that blocked phosphorylation increased Tor1 activity and stress resistance. Nitrogen starvation of fission yeast inhibited TOR signaling to arrest cell cycle progression in G1 phase and promoted sexual differentiation. Starvation and a Gad8/T1972-dependent decrease in Tor1 (TORC2) activity was essential for efficient cell cycle arrest and differentiation. Experiments in human cell lines recapitulated these yeast observations, as mTOR was phosphorylated on T2173 in an AKT-dependent manner. In addition, a T2173A mutation increased mTOR activity. Thus, TOR kinase activity can be reduced through AGC kinase-controlled phosphorylation to generate physiologically significant changes in TOR signaling.


Subject(s)
Protein Kinases/administration & dosage , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces pombe Proteins/administration & dosage , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Adenosine Triphosphate , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , HeLa Cells , Humans , Molecular Sequence Data , Phosphorylation , Phosphothreonine/metabolism , Protein Kinases/chemistry , Protein Structure, Tertiary , Schizosaccharomyces pombe Proteins/chemistry
19.
PLoS Pathog ; 9(11): e1003772, 2013.
Article in English | MEDLINE | ID: mdl-24278019

ABSTRACT

The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.


Subject(s)
Cell Membrane/metabolism , Down-Regulation , Herpesvirus 8, Human/enzymology , Immediate-Early Proteins/biosynthesis , MARVEL Domain-Containing Proteins/biosynthesis , Proteolipids/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis , Viral Proteins/biosynthesis , Cell Membrane/genetics , Cell Membrane/immunology , Genetic Testing , HeLa Cells , Hep G2 Cells , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/immunology , Humans , Immediate-Early Proteins/genetics , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/immunology , Proteolipids/genetics , Proteolipids/immunology , Sarcoma, Kaposi/genetics , Sarcoma, Kaposi/immunology , Sarcoma, Kaposi/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Viral Proteins/genetics , Viral Proteins/immunology
20.
Rapid Commun Mass Spectrom ; 27(18): 2108-14, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-23943332

ABSTRACT

RATIONALE: Mapping sites of wild-type SUMO modification is a challenging endeavour. Here we postulate that a combination of chemical derivatistation and collision-induced dissociation (CID) could be used to generate SUMO remnant diagnostic ions to aid both detection of these isopeptides and increase the analytical value of the product ion spectra required to characterize the nature and position of modification. METHODS: SUMO(2/3)ylated proteins were digested with trypsin to generate isopeptides bearing TGG and QTGG isotags. The resulting digests were then dimethyl labelled followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) utilising CID in a data-dependent acquisition on a QSTAR XL. Product ion spectra were interrogated for the presence of iso-N-terminal fragment ions in addition to backbone sequence ions. The ability to diagnostically detect these isopeptides was tested by generation of co-XICs of the iso-N-terminal fragments in a semi-complex background. RESULTS: Dimethyl labelling facilitated the robust detection of a1', b2' & b3' (TGG isotag) and a1', b2' & b4' (QTGG isotag) ions. The abundance of both N-terminal and iso-N-terminal fragment ions, supported by dimethyl labelling, facilitated the generation of information-rich product ion spectra of these isopeptides to aid confident site assignment. Moreover, the diagnostic nature of the combined XICs of the iso-N-terminal fragments supported detection of the isopeptide signals from a semi-complex background. CONCLUSIONS: A combination of dimethyl labelling and CID does indeed lead to the generation of SUMO remnant isopeptide product ion spectra which are more analytically rich. This enables an improvement in characterization of both the isotag and backbone sequences and the site of modification. The diagnostic value of iso-N-terminal fragment ions allows for post-acquisition XIC interrogation to detect putative isopeptides of interest.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Peptide Mapping , Sumoylation , Tandem Mass Spectrometry , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...