Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 42(3): 633-42, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17822735

ABSTRACT

A biosorbent was prepared by coating ceramic alumina with the natural biopolymer, chitosan, using a dip-coating process. Removal of arsenic (III) (As(III)) and arsenic (V) (As(V)) was studied through adsorption on the biosorbent at pH 4.0 under equilibrium and dynamic conditions. The equilibrium adsorption data were fitted to Langmuir, Freundlich, and Redlich-Peterson adsorption models, and the model parameters were evaluated. All three models represented the experimental data well. The monolayer adsorption capacity of the sorbent, as obtained from the Langmuir isotherm, is 56.50 and 96.46 mg/g of chitosan for As(III) and As(V), respectively. The difference in adsorption capacity for As(III) and As(V) was explained on the basis of speciation of arsenic at pH 4.0. Column adsorption results indicated that no arsenic was found in the effluent solution up to about 40 and 120 bed volumes of As(III) and As(V), respectively. Sodium hydroxide solution (0.1M) was found to be capable of regenerating the column bed.


Subject(s)
Aluminum Oxide/chemistry , Arsenic/chemistry , Chitosan/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption
2.
Environ Sci Technol ; 37(19): 4449-56, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14572099

ABSTRACT

A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.


Subject(s)
Carcinogens, Environmental/isolation & purification , Chelating Agents/chemistry , Chitin/analogs & derivatives , Chitin/chemistry , Chromium/isolation & purification , Models, Theoretical , Water Purification/methods , Adsorption , Aluminum Oxide/chemistry , Chitosan , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...