Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11146, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750037

ABSTRACT

Ecological applications of compound-specific stable isotope analysis (CSIA) of amino acids (AAs) include 1) tracking carbon pathways in food webs using essential AA (AAESS) δ13C values, and 2) estimating consumer trophic position (TP) by comparing relative differences of 'trophic' and 'source' AA δ15N values. Despite the significance of these applications, few studies have examined AA-specific SI patterns among tissues with different AA compositions and metabolism/turnover rates, which could cause differential drawdown of body AA pools and impart tissue-specific isotopic fractionation. To address this knowledge gap, especially in the absence of controlled diet studies examining this issue in captive marine mammals, we used a paired-sample design to compare δ13C and δ15N values of 11 AAs in commonly sampled tissues (skin, muscle, and dentine) from wild beluga whales (Delphinapterus leucas). δ13C of two AAs, glutamic acid/glutamine (Glx, a non-essential AA) and, notably, threonine (an essential AA), differed between skin and muscle. Furthermore, δ15N of three AAs (alanine, glycine, and proline) differed significantly among the three tissues, with glycine δ15N differences of approximately 10 ‰ among tissues supporting recent findings it is unsuitable as a source AA. Significant δ15N differences in AAs such as proline, a trophic AA used as an alternative to Glx in TP estimation, highlight tissue selection as a potential source of error in ecological applications of CSIA-AA. Amino acids that differed among tissues play key roles in metabolic pathways (e.g., ketogenic and gluconeogenic AAs), pointing to potential physiological applications of CSIA-AA in studies of free-ranging animals. These findings underscore the complexity of isotopic dynamics within tissues and emphasize the need for a nuanced approach when applying CSIA-AA in ecological research.


Subject(s)
Amino Acids , Beluga Whale , Carbon Isotopes , Nitrogen Isotopes , Animals , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Amino Acids/metabolism , Amino Acids/analysis , Beluga Whale/metabolism , Food Chain , Skin/metabolism , Skin/chemistry
2.
Oecologia ; 204(1): 13-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227253

ABSTRACT

The measurement of stable isotope values of individual compounds, such as amino acids (AAs), has become a powerful tool in animal ecology and ecophysiology. As with any emerging technique, questions remain regarding the capabilities and limitations of this approach, including how metabolism and tissue synthesis impact the isotopic values of individual AAs and subsequent multivariate patterns. We measured carbon isotope (δ13C) values of essential (AAESS) and nonessential (AANESS) AAs in bone collagen, whisker, muscle, and liver from ten southern sea otters (Enhydra lutris nereis) that stranded in Monterey Bay, California. Sea otters in this population exhibit high degrees of individual dietary specialization, making this an excellent dataset to explore differences in AA δ13C values among tissues in a wild population. We found the δ13C values of the AANESS glutamic acid, proline, serine, and glycine and the AAESS threonine differed significantly among tissues, indicating possible isotopic discrimination during tissue synthesis. Threonine δ13C values were higher in liver relative to bone collagen and muscle, which may indicate catabolism of threonine for gluconeogenesis, an interpretation further supported by correlations between the δ13C values of threonine and its gluconeogenic products glycine and serine in liver. This intraindividual isotopic variation yielded different ecological interpretations among tissues; for 6/10 of the sea otter individuals analyzed, at least one tissue indicated reliance on a different primary producer source than the other tissues. Our results highlight the importance of gluconeogenesis in a carnivorous marine mammal and indicate that metabolic processes influence AAESS and AANESS δ13C values and multivariate AA δ13C patterns.


Subject(s)
Otters , Humans , Animals , Carbon Isotopes , Amino Acids , Threonine , Glycine , Serine , Collagen , California
3.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37694374

ABSTRACT

The gills of most teleost fishes lack plasma-accessible carbonic anhydrase (paCA) that could participate in CO2 excretion. We tested the prevailing hypothesis that paCA would interfere with red blood cell (RBC) intracellular pH regulation by ß-adrenergic sodium-proton exchangers (ß-NHE) that protect pH-sensitive haemoglobin-oxygen (Hb-O2) binding during an acidosis. In an open system that mimics the gills, ß-NHE activity increased Hb-O2 saturation during a respiratory acidosis in the presence or absence of paCA, whereas the effect was abolished by NHE inhibition. However, in a closed system that mimics the tissue capillaries, paCA disrupted the protective effects of ß-NHE activity on Hb-O2 binding. The gills are an open system, where CO2 generated by paCA can diffuse out and is not available to acidifying the RBCs. Therefore, branchial paCA in teleosts may not interfere with RBC pH regulation by ß-NHEs, and other explanations for the evolutionary loss of the enzyme must be considered.


Subject(s)
Carbonic Anhydrases , Gills , Animals , Gills/metabolism , Carbonic Anhydrases/metabolism , Carbon Dioxide/metabolism , Fishes/physiology , Erythrocytes , Hemoglobins/metabolism , Oxygen/metabolism , Sodium-Hydrogen Exchangers/metabolism
4.
Proc Natl Acad Sci U S A ; 119(39): e2115015119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122233

ABSTRACT

The conservation status of large-bodied mammals is dire. Their decline has serious consequences because they have unique ecological roles not replicated by smaller-bodied animals. Here, we use the fossil record of the megafauna extinction at the terminal Pleistocene to explore the consequences of past biodiversity loss. We characterize the isotopic and body-size niche of a mammal community in Texas before and after the event to assess the influence on the ecology and ecological interactions of surviving species (>1 kg). Preextinction, a variety of C4 grazers, C3 browsers, and mixed feeders existed, similar to modern African savannas, with likely specialization among the two sabertooth species for juvenile grazers. Postextinction, body size and isotopic niche space were lost, and the δ13C and δ15N values of some survivors shifted. We see mesocarnivore release within the Felidae: the jaguar, now an apex carnivore, moved into the specialized isotopic niche previously occupied by extinct cats. Puma, previously absent, became common and lynx shifted toward consuming more C4-based resources. Lagomorphs were the only herbivores to shift toward C4 resources. Body size changes from the Pleistocene to Holocene were species-specific, with some animals (deer, hare) becoming significantly larger and others smaller (bison, rabbits) or exhibiting no change to climate shifts or biodiversity loss. Overall, the Holocene body-size-isotopic niche was drastically reduced and considerable ecological complexity lost. We conclude biodiversity loss led to reorganization of survivors and many "missing pieces" within our community; without intervention, the loss of Earth's remaining ecosystems that support megafauna will likely suffer the same fate.


Subject(s)
Deer , Ecosystem , Animals , Biodiversity , Fossils , Rabbits , Texas
5.
Am J Emerg Med ; 60: 78-82, 2022 10.
Article in English | MEDLINE | ID: mdl-35926251

ABSTRACT

INTRODUCTION: Unihemispheric head gunshot wound (HGSW) are associated with improved survival; however, specific clinical and radiographic characteristics associated with survival have not been clearly defined. To further guide prognosis estimates and care discussions, this study aims to identify unihemispheric HGSWs injury patterns; comparing them to bihemispheric HGSWs characterizing factors associated with improved clinical outcomes and survival. METHODS: Patients presenting to our Level 1 trauma center from January 2013 through May 2019 with HGSW injury were reviewed. Patients were grouped into those with unihemispheric versus bihemispheric HGSWs and survivors versus non-survivors. Clinical variables and head computed tomography (CT) features were compared using comparative statistics. RESULTS: 62 HGSW patients met study criteria (unihemispheric = 33, bihemispheric = 29). Regardless of injury type, avoidance of injury to multiple lobes, temporal, parietal and basal ganglia brain regions and intracranial vascular injury were also associated with survival (p < 0.05). Lower admission GCS score and lower motor GCS score was associated with reduced survival in unihemispheric HGSW injury (p < 0.05). Unihemispheric HGSW survivors demonstrated improved clinical outcomes, with reduced hospital length of stay (5 days vs. 47 days, p = 0.014) and intensive care unit length of stay (3 days vs. 20 days, p = 0.021) and more favorable disposition location. CONCLUSION: We found presenting clinical features and CT imaging patterns previously associated with improved survival in HGSW patients is similar in unihemispheric specific injuries. Importantly, a more favorable admission GCS score may portend survivability in unihemsipheric HGSW. Furthermore, unihemispheric HGSW survivors may have improved clinical outcomes, length of stay and disposition location.


Subject(s)
Craniocerebral Trauma , Wounds, Gunshot , Craniocerebral Trauma/diagnostic imaging , Glasgow Coma Scale , Humans , Prognosis , Retrospective Studies , Tomography, X-Ray Computed/methods , Trauma Centers , Wounds, Gunshot/diagnostic imaging
6.
Nat Commun ; 13(1): 2383, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504907

ABSTRACT

Historical ecology has revolutionized our understanding of fisheries and cultural landscapes, demonstrating the value of historical data for evaluating the past, present, and future of Earth's ecosystems. Despite several important studies, Indigenous fisheries generally receive less attention from scholars and managers than the 17th-20th century capitalist commercial fisheries that decimated many keystone species, including oysters. We investigate Indigenous oyster harvest through time in North America and Australia, placing these data in the context of sea level histories and historical catch records. Indigenous oyster fisheries were pervasive across space and through time, persisting for 5000-10,000 years or more. Oysters were likely managed and sometimes "farmed," and are woven into broader cultural, ritual, and social traditions. Effective stewardship of oyster reefs and other marine fisheries around the world must center Indigenous histories and include Indigenous community members to co-develop more inclusive, just, and successful strategies for restoration, harvest, and management.


Subject(s)
Fisheries , Ostreidae , Animals , Ecology , Ecosystem , Seafood
7.
Ecology ; 102(1): e03198, 2021 01.
Article in English | MEDLINE | ID: mdl-33009678

ABSTRACT

The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this "multichannel" feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13 C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13 C and δ15 N for >120 samples; of these we analyzed δ13 C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13 C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13 C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap-resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13-67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting-edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems.


Subject(s)
Ecosystem , Kelp , Animals , Carbon Isotopes/analysis , Chile , Food Chain , Forests , Nitrogen Isotopes/analysis
8.
Ecol Evol ; 10(7): 3318-3329, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273989

ABSTRACT

The sea otter (Enhydra lutris) is a marine mammal hunted to near extinction during the 1800s. Despite their well-known modern importance as a keystone species, we know little about historical sea otter ecology. Here, we characterize the ecological niche of ancient southern sea otters (E. lutris nereis) using δ13C analysis and δ15N analysis of bones recovered from archaeological sites spanning ~7,000 to 350 years before present (N = 112 individuals) at five regions along the coast of California. These data are compared with previously published data on modern animals (N = 165) and potential modern prey items. In addition, we analyze the δ15N of individual amino acids for 23 individuals to test for differences in sea otter trophic ecology through time. After correcting for tissue-specific and temporal isotopic effects, we employ nonparametric statistics and Bayesian niche models to quantify differences among ancient and modern animals. We find ancient otters occupied a larger isotopic niche than nearly all modern localities; likely reflecting broader habitat and prey use in prefur trade populations. In addition, ancient sea otters at the most southerly sites occupied an isotopic niche that was more than twice as large as ancient otters from northerly regions. This likely reflects greater invertebrate prey diversity in southern California relative to northern California. Thus, we suggest the potential dietary niche of sea otters in southern California could be larger than in central and northern California. At two sites, Año Nuevo and Monterey Bay, ancient otters had significantly higher δ15N values than modern populations. Amino acid δ15N data indicated this resulted from shifting baseline isotope values, rather than a change in sea otter trophic ecology. Our results help in better understanding the contemporary ecological role of sea otters and exemplify the strength of combing zooarchaeological and biological information to provide baseline data for conservation efforts.

9.
Sci Adv ; 3(2): e1601759, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28164155

ABSTRACT

The intensive commercial exploitation of California sheephead (Semicossyphus pulcher) has become a complex, multimillion-dollar industry. The fishery is of concern because of high harvest levels and potential indirect impacts of sheephead removals on the structure and function of kelp forest ecosystems. California sheephead are protogynous hermaphrodites that, as predators of sea urchins and other invertebrates, are critical components of kelp forest ecosystems in the northeast Pacific. Overfishing can trigger trophic cascades and widespread ecological dysfunction when other urchin predators are also lost from the system. Little is known about the ecology and abundance of sheephead before commercial exploitation. Lack of a historical perspective creates a gap for evaluating fisheries management measures and marine reserves that seek to rebuild sheephead populations to historical baseline conditions. We use population abundance and size structure data from the zooarchaeological record, in concert with isotopic data, to evaluate the long-term health and viability of sheephead fisheries in southern California. Our results indicate that the importance of sheephead to the diet of native Chumash people varied spatially across the Channel Islands, reflecting modern biogeographic patterns. Comparing ancient (~10,000 calibrated years before the present to 1825 CE) and modern samples, we observed variability and significant declines in the relative abundance of sheephead, reductions in size frequency distributions, and shifts in the dietary niche between ancient and modern collections. These results highlight how size-selective fishing can alter the ecological role of key predators and how zooarchaeological data can inform fisheries management by establishing historical baselines that aid future conservation.


Subject(s)
Ecosystem , Fishes/physiology , Kelp/physiology , Animals , California , Conservation of Natural Resources , Fisheries/history , Food Chain , History, 20th Century , Pacific Ocean , Population Dynamics , Sea Urchins/physiology
10.
Oecologia ; 178(1): 17-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25669450

ABSTRACT

Intraspecific variation in behavior and diet can have important consequences for population and ecosystem dynamics. Here, we examine how differences in reproductive investment and spatial ecology influence individual diet specialization in male and female southern sea otters (Enhydra lutris nereis). We hypothesize that greater reproductive constraints and smaller home ranges of females lead to more pronounced intraspecific competition and increased specialization. We integrate stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope analysis of sea otter vibrissae with long-term observational studies of five subpopulations in California. We define individual diet specialization as low ratios of within-individual variation (WIC) to total population niche width (TNW). We compare isotopic and observational based metrics of WIC/TNW for males and females to data on population densities, and movement patterns using both general linear and linear mixed-effects models. Consistent with our hypothesis, increasing population density is associated with increased individual diet specialization by females but not by males. Additionally, we find the amount of coastline in a sea otter's home range positively related with individual dietary variability, with increased range span resulting in weaker specialization for both males and females. We attribute our results to sex-based differences in movement, with females needing to specialize in their small ranges to maximize energy gain, and posit that the paradigm of individual prey specialization in sea otters with increased intraspecific competition may be a pattern driven largely by females. Our work highlights a potentially broader role of sex in the mechanistic pressures promoting and maintaining diet specialization.


Subject(s)
Diet , Ecosystem , Homing Behavior , Otters , Population Density , Predatory Behavior , Reproduction , Animals , California , Carbon , Ecology , Female , Male , Nitrogen , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...