Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Res Princ Implic ; 9(1): 35, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834918

ABSTRACT

Multilingual speakers can find speech recognition in everyday environments like restaurants and open-plan offices particularly challenging. In a world where speaking multiple languages is increasingly common, effective clinical and educational interventions will require a better understanding of how factors like multilingual contexts and listeners' language proficiency interact with adverse listening environments. For example, word and phrase recognition is facilitated when competing voices speak different languages. Is this due to a "release from masking" from lower-level acoustic differences between languages and talkers, or higher-level cognitive and linguistic factors? To address this question, we created a "one-man bilingual cocktail party" selective attention task using English and Mandarin speech from one bilingual talker to reduce low-level acoustic cues. In Experiment 1, 58 listeners more accurately recognized English targets when distracting speech was Mandarin compared to English. Bilingual Mandarin-English listeners experienced significantly more interference and intrusions from the Mandarin distractor than did English listeners, exacerbated by challenging target-to-masker ratios. In Experiment 2, 29 Mandarin-English bilingual listeners exhibited linguistic release from masking in both languages. Bilinguals experienced greater release from masking when attending to English, confirming an influence of linguistic knowledge on the "cocktail party" paradigm that is separate from primarily energetic masking effects. Effects of higher-order language processing and expertise emerge only in the most demanding target-to-masker contexts. The "one-man bilingual cocktail party" establishes a useful tool for future investigations and characterization of communication challenges in the large and growing worldwide community of Mandarin-English bilinguals.


Subject(s)
Attention , Multilingualism , Speech Perception , Humans , Speech Perception/physiology , Adult , Female , Male , Young Adult , Attention/physiology , Perceptual Masking/physiology , Psycholinguistics
2.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895365

ABSTRACT

Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features that are shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having ~180 neurons. However, the depth of conservation between the Ciona CNS and those in vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a spinal cord-like structure at the base of the chordates. We extend our analysis of shared CNS anatomy further to explore the Ciona "motor ganglion", which has been proposed to be a homolog of the vertebrate hindbrain, spinal cord, or both. We find that a cluster of neurons in the dorsal motor ganglion shares anatomical location, developmental pathway, neural circuit architecture, and gene expression with the vertebrate cerebellum. However, functionally, the Ciona cluster appears to have more in common with vertebrate cerebellum-like structures, insofar as it receives and processes direct sensory input. These findings are consistent with earlier speculation that the cerebellum evolved from a cerebellum-like structure, and suggest that the latter structure was present in the dorsal hindbrain of a common chordate ancestor.

3.
PLoS Genet ; 4(2): e1000022, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18454199

ABSTRACT

The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Drug Resistance/genetics , Dynamins/chemistry , Dynamins/genetics , Dynamins/metabolism , Free Radicals/metabolism , Free Radicals/toxicity , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , Genes, Helminth , Humans , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Optic Atrophy, Autosomal Dominant/etiology , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/metabolism , Oxidative Phosphorylation , Paraquat/toxicity , Phenotype , RNA Interference , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
Dev Biol ; 284(2): 509-22, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15979606

ABSTRACT

Specification of the endoderm precursor, the E cell, in Caenorhabditis elegans requires a genomic region called the Endoderm Determining Region (EDR). We showed previously that end-1, a gene within the EDR encoding a GATA-type transcription factor, restores endoderm specification to embryos deleted for the EDR and obtained evidence for genetic redundancy in this process. Here, we report molecular identification of end-3, a nearby paralog of end-1 in the EDR, and show that end-1 and end-3 together define the endoderm-specifying properties of the EDR. Both genes are expressed in the early E lineage and each is individually sufficient to specify endodermal fate in the E cell and in non-endodermal precursors when ectopically expressed. The loss of function of both end genes, but not either one alone, eliminates endoderm in nearly all embryos and results in conversion of E into a C-like mesectodermal precursor, similar to deletions of the EDR. While two putative end-1 null mutants display no overt phenotype, a missense mutation that alters a residue in the zinc finger domain of END-3 results in misspecification of E in approximately 9% of mutant embryos. We report that the EDR in C. briggsae, which is estimated to have diverged from C. elegans approximately 50--120 myr ago, contains three end-like genes, resulting from both the ancient duplication that produced end-1 and end-3 in C. elegans, and a more recent duplication of end-3 in the lineage specific to C. briggsae. Transgenes containing the C. briggsae end homologs show E lineage-specific expression and function in C. elegans, demonstrating their functional conservation. Moreover, RNAi experiments indicate that the C. briggsae end genes also function redundantly to specify endoderm. We propose that duplicated end genes have been maintained over long periods of evolution, owing in part to their synergistic function.


Subject(s)
Caenorhabditis elegans/genetics , Endoderm/metabolism , Gene Duplication , Helminth Proteins/metabolism , Alleles , Amino Acid Sequence , Animals , Caenorhabditis/genetics , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Lineage , Conserved Sequence , Embryo, Nonmammalian , Endoderm/cytology , Evolution, Molecular , GATA Transcription Factors , Genes, Helminth , Helminth Proteins/chemistry , Helminth Proteins/genetics , In Situ Hybridization , Microscopy, Video , Models, Biological , Molecular Sequence Data , Mutation, Missense , Protein Structure, Tertiary , RNA Interference , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...