Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(14): 10312-10332, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34184879

ABSTRACT

Inhibitors of leucine-rich repeat kinase 2 (LRRK2) and mutants, such as G2019S, have potential utility in Parkinson's disease treatment. Fragment hit-derived pyrrolo[2,3-d]pyrimidines underwent optimization using X-ray structures of LRRK2 kinase domain surrogates, based on checkpoint kinase 1 (CHK1) and a CHK1 10-point mutant. (2R)-2-Methylpyrrolidin-1-yl derivative 18 (LRRK2 G2019S cKi 0.7 nM, LE 0.66) was identified, with increased potency consistent with an X-ray structure of 18/CHK1 10-pt. mutant showing the 2-methyl substituent proximal to Ala147 (Ala2016 in LRRK2). Further structure-guided elaboration of 18 gave the 2-[(1,3-dimethyl-1H-pyrazol-4-yl)amino] derivative 32. Optimization of 32 afforded diastereomeric oxolan-3-yl derivatives 44 and 45, which demonstrated a favorable in vitro PK profile, although they displayed species disconnects in the in vivo PK profile, and a propensity for P-gp- and/or BCRP-mediated efflux in a mouse model. Compounds 44 and 45 demonstrated high potency and exquisite selectivity for LRRK2 and utility as chemical probes for the study of LRRK2 inhibition.


Subject(s)
Checkpoint Kinase 1/chemistry , Drug Design , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Checkpoint Kinase 1/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
2.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31685675

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with impaired motor function and several non-motor symptoms, with no available disease modifying treatment. Intracellular accumulation of pathological α-synuclein inclusions is a hallmark of idiopathic PD, whereas, dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial PD that is clinically indistinguishable from idiopathic PD. Recent evidence supports the hypothesis that an increase in LRRK2 kinase activity is associated with the development of not only familial LRRK2 PD, but also idiopathic PD. Previous reports have shown preclinical effects of LRRK2 modulation on α-synuclein-induced neuropathology. Increased subthalamic nucleus (STN) burst firing in preclinical neurotoxin models and PD patients is hypothesized to be causally involved in the development of the motor deficit in PD. To study a potential pathophysiological relationship between α-synuclein pathology and LRRK2 kinase activity in PD, we investigated the effect of chronic LRRK2 inhibition in an AAV-α-synuclein overexpression rat model. In this study, we report that chronic LRRK2 inhibition using PFE-360 only induced a marginal effect on motor function. In addition, the aberrant STN burst firing and associated neurodegenerative processes induced by α-synuclein overexpression model remained unaffected by chronic LRRK2 inhibition. Our findings do not strongly support LRRK2 inhibition for the treatment of PD. Therefore, the reported beneficial effects of LRRK2 inhibition in similar α-synuclein overexpression rodent models must be considered with prudence and additional studies are warranted in alternative α-synuclein-based models.


Subject(s)
Antiparkinson Agents/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Morpholines/pharmacology , Parkinson Disease/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , alpha-Synuclein/metabolism , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/metabolism , Rats, Sprague-Dawley , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/metabolism , Time Factors , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/genetics
3.
Neurobiol Dis ; 116: 13-27, 2018 08.
Article in English | MEDLINE | ID: mdl-29680709

ABSTRACT

Parkinson's disease (PD) affects motor function through degenerative processes and synaptic transmission impairments in the basal ganglia. None of the treatments available delays or stops the progression of the disease. While α-synuclein pathological accumulation represents a hallmark of the disease in its idiopathic form, leucine rich repeat kinase 2 (LRRK2) is genetically associated with familial and sporadic forms of PD. The genetic information suggests that LRRK2 kinase activity plays a role in the pathogenesis of the disease. To support a potential link between LRRK2 and α-synuclein in the pathophysiological mechanisms underlying PD, the effect of LRRK2 ablation or LRRK2 kinase pharmacological inhibition were studied in rats with adeno-associated virus-induced (AAV) α-synuclein overexpression in the nigrostriatal pathway. We first report that viral overexpression of α-synuclein induced increased burst firing in subthalamic neurons. Aberrant firing pattern of subthalamic neurons has also been reported in PD patients and neurotoxin-based animal models, and is hypothesized to play a key role in the appearance of motor dysfunction. We further report that genetic LRRK2 ablation, as well as pharmacological inhibition of LRRK2 kinase activity with PFE-360, reversed the aberrant firing pattern of subthalamic neurons induced by AAV-α-synuclein overexpression. This effect of LRRK2 modulation was not associated with any neuroprotective effect or motor improvement. Nonetheless, our findings may indicate a potential therapeutic benefit of LRRK2 kinase inhibition by normalizing the aberrant neuronal activity of subthalamic neurons induced by AAV-α-synuclein, a neurophysiological trait recapitulating observations in PD.


Subject(s)
Action Potentials/physiology , Dependovirus/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/deficiency , Parkinsonian Disorders/metabolism , Subthalamic Nucleus/metabolism , alpha-Synuclein/biosynthesis , Action Potentials/drug effects , Animals , Dependovirus/genetics , Female , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinsonian Disorders/genetics , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Transgenic , Subthalamic Nucleus/drug effects , alpha-Synuclein/genetics
4.
Toxicology ; 395: 15-22, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29307545

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no existing therapeutic approach to delay or stop progression. Genetic, biochemical and pre-clinical studies have provided evidence that leucine-rich-repeat-kinase-2 (LRRK2) kinase is involved in the pathogenesis of PD, and small molecule LRRK2 inhibitors represent a novel potential therapeutic approach. However, potentially adverse target-related effects have been discovered in the lung and kidneys of LRRK2 knock-out (ko) mice and rats. It is unclear if the LRRK2 ko effect in the kidneys and lung is also induced by pharmacological inhibition of the LRRK2 kinase. Here, we show that treatment with the LRRK2 inhibitor PFE-360 in rats induces a morphological kidney phenotype resembling that of the LRRK2 ko rats, whereas no effects were observed in the lung. The PFE-360 treatment induced morphological changes characterised by darkened kidneys and progressive accumulation of hyaline droplets in the renal proximal tubular epithelium. However, no histopathological evidence of renal tubular injury or changes in the blood and urine parameters that would be indicative of kidney toxicity or impaired kidney function were observed after up to 12 weeks of treatment. Morphological changes were detected in the kidney after 2 weeks of treatment and were partially reversible within a 30 day treatment-free period. Our findings suggest that pharmacological LRRK2 inhibition may not have adverse consequences for kidney function.


Subject(s)
Enzyme Inhibitors/toxicity , Kidney/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Morpholines/toxicity , Pyrimidines/toxicity , Pyrroles/toxicity , Animals , Body Weight/drug effects , Female , Kidney/anatomy & histology , Kidney/metabolism , Kidney Function Tests , Kidney Tubules, Proximal/anatomy & histology , Kidney Tubules, Proximal/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/biosynthesis , Lung/anatomy & histology , Lung/drug effects , Rats , Rats, Sprague-Dawley
5.
J Med Chem ; 60(21): 8945-8962, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29023112

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinson's disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity. The CHK1 10-point mutant was preferred, following assessment of surrogate binding affinity with LRRK2 inhibitors. Fragment hit-derived arylpyrrolo[2,3-b]pyridine LRRK2 inhibitors underwent structure-guided optimization using this crystallographic surrogate. LRRK2-pSer935 HEK293 IC50 data for 22 were consistent with binding to Ala2016 in LRRK2 (equivalent to Ala147 in CHK1 10-point mutant structure). Compound 22 was shown to be potent, moderately selective, orally available, and brain-penetrant in wild-type mice, and confirmation of target engagement was demonstrated, with LRRK2-pSer935 IC50 values for 22 in mouse brain and kidney being 1.3 and 5 nM, respectively.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Animals , Brain/metabolism , Checkpoint Kinase 1 , Crystallography/methods , HEK293 Cells , Humans , Kidney/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mutation , Parkinson Disease/genetics , Protein Binding , Protein Domains , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
6.
Sci Rep ; 7(1): 10300, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860483

ABSTRACT

Genetic variation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with risk of familial and sporadic Parkinson's disease (PD). To support clinical development of LRRK2 inhibitors as disease-modifying treatment in PD biomarkers for kinase activity, target engagement and kinase inhibition are prerequisite tools. In a combined proteomics and phosphoproteomics study on human peripheral mononuclear blood cells (PBMCs) treated with the LRRK2 inhibitor Lu AF58786 a number of putative biomarkers were identified. Among the phospho-site hits were known LRRK2 sites as well as two phospho-sites on human Rab10 and Rab12. LRRK2 dependent phosphorylation of human Rab10 and human Rab12 at positions Thr73 and Ser106, respectively, was confirmed in HEK293 and, more importantly, Rab10-pThr73 inhibition was validated in immune stimulated human PBMCs using two distinct LRRK2 inhibitors. In addition, in non-stimulated human PBMCs acute inhibition of LRRK2 with two distinct LRRK2 inhibitor compounds reduced Rab10-Thr73 phosphorylation in a concentration-dependent manner with apparent IC50's equivalent to IC50's on LRRK2-pSer935. The identification of Rab10 phosphorylated at Thr73 as a LRRK2 inhibition marker in human PBMCs strongly support inclusion of assays quantifying Rab10-pThr73 levels in upcoming clinical trials evaluating LRRK2 kinase inhibition as a disease-modifying treatment principle in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leukocytes, Mononuclear/metabolism , rab GTP-Binding Proteins/metabolism , Computational Biology/methods , Dose-Response Relationship, Drug , Humans , Immunomodulation/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leukocytes, Mononuclear/immunology , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proteome , Proteomics , Reproducibility of Results
7.
Bioorg Med Chem Lett ; 27(18): 4500-4505, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28802631

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has attracted considerable interest as a therapeutic target for the treatment of Parkinson's disease. Compounds derived from a 2-aminopyridine screening hit were optimised using a LRRK2 homology model based on mixed lineage kinase 1 (MLK1), such that a 2-aminopyridine-based lead molecule 45, with in vivo activity, was identified.


Subject(s)
Aminopyridines/pharmacology , Drug Design , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Aminopyridines/chemical synthesis , Aminopyridines/chemistry , Animals , Dogs , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Madin Darby Canine Kidney Cells/drug effects , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Rats , Structure-Activity Relationship
8.
Cereb Cortex ; 27(2): 1573-1587, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26796213

ABSTRACT

d-Serine is a co-agonist of NMDA receptors (NMDARs) whose activity is potentially regulated by Asc-1 (SLC7A10), a transporter that displays high affinity for d-serine and glycine. Asc-1 operates as a facilitative transporter and as an antiporter, though the preferred direction of d-serine transport is uncertain. We developed a selective Asc-1 blocker, Lu AE00527, that blocks d-serine release mediated by all the transport modes of Asc-1 in primary cultures and neocortical slices. Furthermore, d-serine release is reduced in slices from Asc-1 knockout (KO) mice, indicating that d-serine efflux is the preferred direction of Asc-1. The selectivity of Lu AE00527 is assured by the lack of effect on slices from Asc-1-KO mice, and the lack of interaction with the co-agonist site of NMDARs. Moreover, in vivo injection of Lu AE00527 in P-glycoprotein-deficient mice recapitulates a hyperekplexia-like phenotype similar to that in Asc-1-KO mice. In slices, Lu AE00527 decreases the long-term potentiation at the Schaffer collateral-CA1 synapses, but does not affect the long-term depression. Lu AE00527 blocks NMDAR synaptic potentials when typical Asc-1 extracellular substrates are present, but it does not affect AMPAR transmission. Our data demonstrate that Asc-1 mediates tonic co-agonist release, which is required for optimal NMDAR activation and synaptic plasticity.


Subject(s)
Amino Acid Transport System y+/genetics , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Prosencephalon/physiology , Synapses/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Humans , Mice, Knockout , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology
9.
Front Cell Neurosci ; 10: 164, 2016.
Article in English | MEDLINE | ID: mdl-27445691

ABSTRACT

The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection.

10.
Acta Pharmacol Sin ; 36(7): 874-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26027661

ABSTRACT

AIM: To discover antagonists of the orphan G-protein coupled receptor GPR139 through high-throughput screening of a collection of diverse small molecules. METHODS: Calcium mobilization assays were used to identify initial hits and for subsequent confirmation studies. RESULTS: Five small molecule antagonists, representing 4 different scaffolds, were identified following high-throughput screening of 16 000 synthetic compounds. CONCLUSION: The findings provide important tools for further study of this orphan G-protein coupled receptor.


Subject(s)
High-Throughput Screening Assays/methods , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Humans
11.
Hum Mol Genet ; 23(17): 4465-78, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24718285

ABSTRACT

Our understanding of Parkinson's disease (PD) has been revolutionized by the discovery of disease-causing genetic mutations. The most common of these is the G2019S mutation in the LRRK2 kinase gene, which leads to increased kinase activity. However, the link between increased kinase activity and PD is unclear. Previously, we showed that dopaminergic expression of the human LRRK2-G2019S transgene in flies led to an activity-dependent loss of vision in older animals and we hypothesized that this may have been preceded by a failure to regulate neuronal activity correctly in younger animals. To test this hypothesis, we used a sensitive measure of visual function based on frequency-tagged steady-state visually evoked potentials. Spectral analysis allowed us to identify signals from multiple levels of the fly visual system and wild-type visual response curves were qualitatively similar to those from human cortex. Dopaminergic expression of hLRRK2-G2019S increased contrast sensitivity throughout the retinal network. To test whether this was due to increased kinase activity, we fed Drosophila with kinase inhibitors targeted at LRRK2. Contrast sensitivity in both day 1 and day 14 flies was normalized by a novel LRRK2 kinase inhibitor 'BMPPB-32'. Biochemical and cellular assays suggested that BMPPB-32 would be a more specific kinase inhibitor than LRRK2-IN-1. We confirmed this in vivo, finding that dLRRK(-) null flies show large off-target effects with LRRK2-IN-1 but not BMPPB-32. Our data link the increased Kinase activity of the G2019S-LRRK2 mutation to neuronal dysfunction and demonstrate the power of the Drosophila visual system in assaying the neurological effects of genetic diseases and therapies.


Subject(s)
Drosophila melanogaster/physiology , Parkinson Disease/physiopathology , Vision, Ocular/physiology , Animals , Contrast Sensitivity/drug effects , Disease Models, Animal , Evoked Potentials, Visual/drug effects , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Biological , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , Perceptual Masking , Photoreceptor Cells, Invertebrate/drug effects , Photoreceptor Cells, Invertebrate/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Vision, Ocular/drug effects
12.
Psychopharmacology (Berl) ; 221(3): 451-68, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22124672

ABSTRACT

RATIONALE: A growing body of evidence suggests that negative modulation of γ-aminobutyric acid (GABA) GABA(A) α5 receptors may be a promising strategy for the treatment of certain facets of cognitive impairment; however, selective modulators of GABA(A) α5 receptors have not yet been tested in "schizophrenia-relevant" cognitive assay/model systems in animals. OBJECTIVES: The objectives of this study were to investigate the potential of RO4938581, a negative modulator of GABA(A) α5 receptors, and to attenuate cognitive impairments induced following sub-chronic (sub-PCP) and early postnatal PCP (neo-PCP) administration in the novel object recognition (NOR) and intra-extradimensional shift (ID/ED) paradigms in rats. Complementary in vitro, ex vivo and in vivo studies were performed to confirm negative modulatory activity of RO4938581 and to investigate animal model validity, concept validity and potential side effect issues, respectively. RESULTS: In vitro studies confirmed the reported negative modulatory activity of RO4938581, whilst immunohistochemical analyses revealed significantly reduced parvalbumin-positive cells in the prefrontal cortex of sub-PCP- and neo-PCP-treated rats. RO4938581 (1 mg/kg) ameliorated both sub-PCP- and neo-PCP-induced cognitive deficits in NOR and ID/ED performance, respectively. In contrast, QH-II-066 (1 and 3 mg/kg), a GABA(A) α5 receptor positive modulator, impaired cognitive performance in the NOR task when administered to vehicle-treated animals. Additional studies revealed that both RO4938581 (1 mg/kg) and QH-II-066 (1 and 3 mg/kg) attenuated amphetamine-induced hyperactivity in rats. CONCLUSIONS: Taken together, these novel findings suggest that negative modulation of GABA(A) α5 receptors may represent an attractive treatment option for the cognitive impairments, and potentially positive symptoms, associated with schizophrenia.


Subject(s)
Benzodiazepines/pharmacology , Cognition Disorders/drug therapy , Imidazoles/pharmacology , Phencyclidine/toxicity , Receptors, GABA-A/drug effects , Amphetamine/pharmacology , Animals , CHO Cells , Central Nervous System Stimulants/pharmacology , Cognition Disorders/chemically induced , Cricetinae , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Hyperkinesis/chemically induced , Male , Oocytes , Parvalbumins/metabolism , Phencyclidine/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Xenopus laevis
13.
J Med Chem ; 54(9): 3206-21, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21486038

ABSTRACT

The synthesis and structure-activity relationship of a novel series of compounds with combined effects on 5-HT(3A) and 5-HT(1A) receptors and on the serotonin (5-HT) transporter (SERT) are described. Compound 5m (Lu AA21004) was the lead compound, displaying high affinity for recombinant human 5-HT(1A) (K(i) = 15 nM), 5-HT(1B) (K(i) = 33 nM), 5-HT(3A) (K(i) = 3.7 nM), 5-HT(7) (K(i) = 19 nM), and noradrenergic ß(1) (K(i) = 46 nM) receptors, and SERT (K(i) = 1.6 nM). Compound 5m displayed antagonistic properties at 5-HT(3A) and 5-HT(7) receptors, partial agonist properties at 5-HT(1B) receptors, agonistic properties at 5-HT(1A) receptors, and potent inhibition of SERT. In conscious rats, 5m significantly increased extracellular 5-HT levels in the brain after acute and 3 days of treatment. Following the 3-day treatment (5 or 10 (mg/kg)/day) SERT occupancies were only 43% and 57%, respectively. These characteristics indicate that 5m is a novel multimodal serotonergic compound, and 5m is currently in clinical development for major depressive disorder.


Subject(s)
Antidepressive Agents/chemical synthesis , Depressive Disorder, Major/drug therapy , Piperazines/chemical synthesis , Sulfides/chemical synthesis , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Cell Line , Drug Partial Agonism , Drug Stability , Hippocampus/drug effects , Hippocampus/metabolism , Humans , In Vitro Techniques , Microsomes, Liver/metabolism , Oocytes/drug effects , Oocytes/physiology , Piperazines/chemistry , Piperazines/pharmacology , Radioligand Assay , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Serotonin/metabolism , Receptors, Serotonin, 5-HT1/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT3 Receptor Antagonists/chemical synthesis , Serotonin 5-HT3 Receptor Antagonists/chemistry , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Vortioxetine , Xenopus
14.
ACS Med Chem Lett ; 2(4): 303-6, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-24900311

ABSTRACT

GPR139 is an orphan G-protein coupled receptor (GPCR) which is primarily expressed in the central nervous system (CNS). In order to explore the biological function of this receptor, selective tool compounds are required. A screening campaign identified compound 1a as a high potency GPR139 agonist with an EC50 = 39 nM in a calcium mobilization assay in CHO-K1 cells stably expressing the GPR139 receptor. In the absence of a known endogenous ligand, the maximum effect was set as 100% for 1a. Screening against 90 diverse targets revealed no cross-reactivity issues. Assessment of the pharmacokinetic properties showed limited utility as in vivo tool compound in rat with a poor whole brain exposure of 61 ng/g and a brain/plasma (b/p) ratio of 0.03. Attempts to identify a more suitable analogue identified the des-nitrogen analogue 1s with a reduced polar surface area of 76.7 Å(2) and an improved b/p ratio of 2.8. The whole brain exposure remained low at 95 ng/g due to a low plasma exposure.

15.
Chemistry ; 16(15): 4557-66, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20333716

ABSTRACT

A novel fluorous-tagged ammonia equivalent has been developed. It is based on a nitrogen-oxygen bond, which can be cleaved in a traceless manner by a molybdenum complex or samarium diiodide. The application in the synthesis of ureas, amides, sulfonamides, and carbamates is described. The scope of the fluorous N-O linker is exemplified by the synthesis of itopride, a drug used for the treatment of functional dyspepsia. Itopride was synthesized with the aid of fluorous purification methods and the product was isolated in good overall yield, with high purity.


Subject(s)
Amides/chemical synthesis , Ammonia/chemistry , Benzamides/chemical synthesis , Benzyl Compounds/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Sulfonamides/chemical synthesis , Urea/chemical synthesis , Amides/chemistry , Benzamides/chemistry , Benzamides/pharmacology , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology , Carbamates/chemistry , Combinatorial Chemistry Techniques , Dyspepsia/drug therapy , Hydrocarbons, Fluorinated/chemistry , Indicators and Reagents , Iodides/chemistry , Molecular Structure , Molybdenum/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Samarium/chemistry , Sulfonamides/chemistry , Urea/analogs & derivatives , Urea/chemistry
16.
Bioorg Med Chem Lett ; 16(15): 3981-4, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16725323

ABSTRACT

Elevation of glycine levels by inhibition of the glycine transporter-1 (GlyT-1) and activation of the NMDA receptor is a potential strategy for the treatment of schizophrenia. A novel series of 2-arylsulfanylphenyl-1-oxyalkyl amino acids have been identified. The most prominent member of this series S-1-{2-[3-(3-fluoro-phenylsulfanyl)biphenyl-4-yloxy]ethyl}pyrrolidine-2-carboxylic acid (38) is a potent GlyT-1 inhibitor (IC50=59 nM). In vitro and in vivo assessment of CNS exposure indicates this compound is a likely substrate for active efflux transporters.


Subject(s)
Amino Acids/chemical synthesis , Amino Acids/pharmacology , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Amino Acids/chemistry , Amino Acids/pharmacokinetics , Blood-Brain Barrier , Caco-2 Cells , Humans , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 14(15): 4027-30, 2004 Aug 02.
Article in English | MEDLINE | ID: mdl-15225720

ABSTRACT

Elevation of glycine levels and activation of the NMDA receptor by inhibition of the glycine transporter 1 (GlyT-1) is a potential strategy for the treatment of schizophrenia. A novel series of GlyT-1 inhibitors have been identified containing the 2-arylsulfanyl-phenylpiperazine motif. The most prominent member of this series, (R)-4-[5-chloro-2-(4-methoxy-phenylsulfanyl)-phenyl]-2-methyl-piperazin-1-yl-acetic acid (31) is a potent glycine transporter-1 inhibitor (IC(50)=150 nM), which elevated glycine levels in rat ventral hippocampus as measured by microdialysis in vivo at doses of 1.2-4.6 mg/kg s.c.


Subject(s)
Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Antipsychotic Agents/chemical synthesis , Piperazines/chemical synthesis , Piperazines/pharmacology , Acetates/chemical synthesis , Acetates/chemistry , Acetates/pharmacology , Animals , Antipsychotic Agents/therapeutic use , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Kinetics , Models, Molecular , Molecular Conformation , Molecular Structure , Piperazines/chemistry , Rats , Receptors, N-Methyl-D-Aspartate/drug effects , Schizophrenia/drug therapy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...