Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(51): 9243-9248, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38155597

ABSTRACT

In a 2016 screen of natural product extracts, a new family of natural products, the cahuitamycins, was discovered and found to inhibit biofilm formation in the human pathogen Acinetobacter baumannii. The proposed molecular structures contained an unusual piperazic acid residue, which piqued interest related to their structure/function and biosynthesis. Herein we disclose the first total synthesis of the proposed structure of cahuitamycin A in a 12-step longest linear sequence and 18% overall yield. Comparison of spectral and biological data of the authentic natural product and synthetic compound revealed inconsistentancies with the isolated metabolite. We therefore executed the diverted total synthesis of three isomeric compounds, which were also found to be disparate from the isolated natural product. This work sets the stage for future synthetic and biochemical investigations of an important class of natural products.


Subject(s)
Acinetobacter baumannii , Biological Products , Humans , Biological Products/chemistry , Molecular Structure , Isomerism , Stereoisomerism
2.
J Org Chem ; 88(13): 9565-9568, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37319431

ABSTRACT

A new visible-light-driven method for the carboxylation of (hetero)aryl/vinyl bromides has been developed using catalytic 4CzIPN, nickel, phenyl triflimide, and sodium formate as a carboxylation agent. Interestingly, we found catalytic phenyl triflimide plays an essential role in promoting the reaction. While many C(sp2) carboxylation reactions require harsh reagents or gaseous carbon dioxide, we demonstrate the mild and facile construction of carboxylic acids from readily available starting materials.


Subject(s)
Bromides , Nickel , Formates , Catalysis
3.
ACS Catal ; 11(9): 4968-4972, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34367722

ABSTRACT

The dearomative cyclization of linear amides to complex spirocyclic butyrolactams has been enabled by photoredox catalysis through a reductive radical-polar crossover mechanism. This mechanism operates with precision on unactivated aromatic substrates to give a wide range of 1,4-hydroalkylation products. This method utilizes a simple organic catalyst/reductant pair to deliver products in a highly flexible manner with respect to substitution, and the products can be further functionalized under simple conditions to afford a collection of motifs. The mechanistic analysis performed here outlines the salient features of this strategy, which were applied to prepare a collection of complex scaffolds including the anticonvulsive agent gabapentin.

4.
J Am Chem Soc ; 143(24): 8987-8992, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34102836

ABSTRACT

We developed an effective method for reductive radical formation that utilizes the radical anion of carbon dioxide (CO2•-) as a powerful single electron reductant. Through a polarity matched hydrogen atom transfer (HAT) between an electrophilic radical and a formate salt, CO2•- formation occurs as a key element in a new radical chain reaction. Here, radical chain initiation can be performed through photochemical or thermal means, and we illustrate the ability of this approach to accomplish reductive activation of a range of substrate classes. Specifically, we employed this strategy in the intermolecular hydroarylation of unactivated alkenes with (hetero)aryl chlorides/bromides, radical deamination of arylammonium salts, aliphatic ketyl radical formation, and sulfonamide cleavage. We show that the reactivity of CO2•- with electron-poor olefins results in either single electron reduction or alkene hydrocarboxylation, where substrate reduction potentials can be utilized to predict reaction outcome.


Subject(s)
Carbon Dioxide/chemistry , Anions/chemistry , Free Radicals/chemistry , Molecular Structure , Oxidation-Reduction
5.
J Nat Prod ; 83(1): 174-178, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31904956

ABSTRACT

This study began with the goal of identifying additional constituents from Zyzzya fuliginosa extracts obtained from an Indo-Pacific sponge (coll. no. 06132). The previous work identified several red and green pyrroloiminiquinones (aka pyrrolo[4,3,2-de]quinolines), and this reinvestigation provided two additional analogues, a blue compound named zyzzamine A (1) and a green compound named zyzzamine B (2). The relatively low ratio of H/[sum(CNO)] = 0.71 or 0.76 of this pair greatly complicated the final steps of compound characterization and required the use of five 2D NMR strategies and MS2 data sets.


Subject(s)
Porifera/chemistry , Quinolines/chemistry , Animals , Magnetic Resonance Spectroscopy , Molecular Structure , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...