Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 50(28): 5422-9, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22016208

ABSTRACT

An analytical model is formulated for the extinction of light by particles in a cavity ringdown spectroscopy measurement. The electromagnetic field inside the cavity is assumed to be the lowest-order Gaussian beam, and the scattering by the particles is incorporated using van de Hulst's approximation for the scattering by a sphere. This model includes both coherent scattering in the forward direction and strong scattering in the forward direction for electrically large particles. The model is used to estimate the amount of energy scattered by the particles that is coupled back into the incident beam. The consequences of this coupling for the measurement of the extinction cross section of spherical particles are examined.

2.
Appl Opt ; 48(21): 4177-90, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19623232

ABSTRACT

Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.


Subject(s)
Butterflies/physiology , Color , Colorimetry/methods , Models, Biological , Wings, Animal/physiology , Animals , Computer Simulation , Electromagnetic Fields , Refractometry
3.
J Opt Soc Am A Opt Image Sci Vis ; 21(6): 975-80, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15191177

ABSTRACT

Most solutions for electromagnetic diffraction by a circular aperture in a perfectly conducting plane screen are for an incident homogeneous (propagating) plane wave. When the aperture is electrically small (dimensions small compared to the wavelength), the well-known transmission coefficient behaves as the fourth power of the diameter/wavelength. We consider the case in which the incident field is an inhomogeneous (evanescent) plane wave. Numerical calculations for the electrically small circular aperture show that the transmission coefficient for an inhomogeneous plane wave can be substantially greater than for a homogeneous plane wave at the same frequency. This observation may be helpful in explaining the increased transmission recently reported for electrically small apertures in plane screens with modifications. The numerical calculations for the electrically small aperture are in agreement with results from approximate analytical expressions that are based on the equivalent electric and magnetic dipole moments for the electrically small complementary disk.

4.
J Opt Soc Am A Opt Image Sci Vis ; 20(12): 2378-84, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14686518

ABSTRACT

A general expression is obtained for the time-average power passing through a plane transverse to the direction of propagation for two counterpropagating electromagnetic beams. Each beam is represented by its plane-wave spectrum, which contains both propagating and evanescent plane waves. The expression clearly shows that, under certain conditions, the evanescent plane waves contribute to the time-average power passing through the plane. This is in contrast to the case of a single electromagnetic beam, in which only the propagating plane waves contribute to the time-average power passing through the plane. The utility of the expression is demonstrated with a practical example: a line current placed over a dielectric slab. Here the counterpropagating beams are the incident and reflected fields in the region between the current and the slab. The expression is applied to a plane in this region, and it is used to determine the time-average power associated with the evanescent waves passing through this plane. This power is then shown to be equal to the time-average power carried by the guided modes of the slab.

5.
J Opt Soc Am A Opt Image Sci Vis ; 19(11): 2265-80, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12413128

ABSTRACT

Formulas are derived for the diffraction of a three-dimensional electromagnetic Gaussian beam by a perfectly conducting half-plane. The beam can be incident from any direction, and the main component of the electric field can point in any direction on the plane of the beam waist. The center of the beam waist is on the edge of the half-plane. The incident beam is constructed as a superposition of plane waves, and the total diffracted field is obtained from a superposition of the diffracted fields that are due to each plane wave. Physical constraints that limit the size and direction of the beam relative to the half-plane are described and incorporated into the theory. The scattered field in the far zone is obtained by asymptotic evaluation of the general formulas. Graphical results for the near-field as well as far-field patterns are presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...