Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Biol Rev Camb Philos Soc ; 99(2): 372-389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37866400

ABSTRACT

Agricultural intensification at field and landscape scales, including increased use of agrochemicals and loss of semi-natural habitats, is a major driver of insect declines and other community changes. Efforts to understand and mitigate these effects have traditionally focused on ecological responses. At the same time, adaptations to pesticide use and habitat fragmentation in both insects and flowering plants show the potential for rapid evolution. Yet we lack an understanding of how such evolutionary responses may propagate within and between trophic levels with ensuing consequences for conservation of species and ecological functions in agroecosystems. Here, we review the literature on the consequences of agricultural intensification on plant and animal evolutionary responses and interactions. We present a novel conceptualization of evolutionary change induced by agricultural intensification at field and landscape scales and emphasize direct and indirect effects of rapid evolution on ecosystem services. We exemplify by focusing on economically and ecologically important interactions between plants and pollinators. We showcase available eco-evolutionary theory and plant-pollinator modelling that can improve predictions of how agricultural intensification affects interaction networks, and highlight available genetic and trait-focused methodological approaches. Specifically, we focus on how spatial genetic structure affects the probability of propagated responses, and how the structure of interaction networks modulates effects of evolutionary change in individual species. Thereby, we highlight how combined trait-based eco-evolutionary modelling, functionally explicit quantitative genetics, and genomic analyses may shed light on conditions where evolutionary responses impact important ecosystem services.


Subject(s)
Ecosystem , Pollination , Animals , Plants/genetics , Insecta/genetics , Agriculture
2.
Mol Ecol ; 33(2): e17212, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990959

ABSTRACT

Invasive species are predicted to adjust their morphological, physiological and life-history traits to adapt to their non-native environments. Although a loss of genetic variation during invasion may restrict local adaptation, introduced species often thrive in novel environments. Despite being founded by just a few individuals, Bombus terrestris (Hymenoptera: Apidae) has in less than 30 years successfully spread across the island of Tasmania (Australia), becoming abundant and competitive with native pollinators. We use RADseq to investigate what neutral and adaptive genetic processes associated with environmental and morphological variation allow B. terrestris to thrive as an invasive species in Tasmania. Given the widespread abundance of B. terrestris, we expected little genetic structure across Tasmania and weak signatures of environmental and morphological selection. We found high gene flow with low genetic diversity, although with significant isolation-by-distance and spatial variation in effective migration rates. Restricted migration was evident across the mid-central region of Tasmania, corresponding to higher elevations, pastural land, low wind speeds and low precipitation seasonality. Tajima's D indicated a recent population expansion extending from the south to the north of the island. Selection signatures were found for loci in relation to precipitation, wind speed and wing loading. Candidate loci were annotated to genes with functions related to cuticle water retention and insect flight muscle stability. Understanding how a genetically impoverished invasive bumblebee has rapidly adapted to a novel island environment provides further understanding about the evolutionary processes that determine successful insect invasions, and the potential for invasive hymenopteran pollinators to spread globally.


Subject(s)
Gene Flow , Introduced Species , Animals , Australia , Bees/genetics , Genetic Variation/genetics , Tasmania
3.
Biol Rev Camb Philos Soc ; 99(3): 675-698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38118437

ABSTRACT

Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.


Subject(s)
Grassland , Insecta , Pollination , Pollination/physiology , Animals , Insecta/physiology , Plants/classification , Ecosystem , Biodiversity
4.
Ecotoxicology ; 32(10): 1247-1256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062283

ABSTRACT

Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape's production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.


Subject(s)
Insecticides , Bees , Animals , Insecticides/toxicity , Insecticides/analysis , Glucosinolates , Neonicotinoids/toxicity , Plant Nectar , Seeds/chemistry , Pollination
5.
Proc Biol Sci ; 290(1996): 20222548, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37040802

ABSTRACT

Local coexistence of bees has been explained by flower resource partitioning, but coexisting bumblebee species often have strongly overlapping diets. We investigated if light microhabitat niche separation, underpinned by visual traits, could serve as an alternative mechanism underlying local coexistence of bumblebee species. To this end, we focused on a homogeneous flower resource-bilberry-in a heterogeneous light environment-hemi-boreal forests. We found that bumblebee communities segregated along a gradient of light intensity. The community-weighted mean of the eye parameter-a metric measuring the compromise between light sensitivity and visual resolution-decreased with light intensity, showing a higher investment in light sensitivity of communities observed in darker conditions. This pattern was consistent at the species level. In general, species with higher eye parameter (larger investment in light sensitivity) foraged in dimmer light than those with a lower eye parameter (higher investment in visual resolution). Moreover, species realized niche optimum was linearly related to their eye parameter. These results suggest microhabitat niche partitioning to be a potential mechanism underpinning bumblebee species coexistence. This study highlights the importance of considering sensory traits when studying pollinator habitat use and their ability to cope with changing environments.


Subject(s)
Ecosystem , Photophobia , Bees , Animals , Flowers , Taiga
6.
J Insect Sci ; 23(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36856678

ABSTRACT

Introduced social insects can be highly invasive outside of their native range. Around the world, the introduction and establishment of the eusocial bumblebee Bombus terrestris (L. 1758) (Hymenoptera: Apidae) has negatively impacted native pollinators and ecosystems. Understanding how morphological variation is linked to environmental variation across invasive ranges can indicate how rapidly species may be diverging or adapting across novel ranges and may assist with predicting future establishment and spread. Here we investigate whether B. terrestris shows morphological variation related to environmental variation across the island of Tasmania (Australia) where it was introduced three decades ago. We collected 169 workers from 16 sites across Tasmania and related relative abundance and morphology to landscape-wide climate, land use, and vegetation structure. We found weak morphological divergence related to environmental conditions across Tasmania. Body size of B. terrestris was positively associated with the percentage of urban land cover, a relationship largely driven by a single site, possibly reflecting high resource availability in urban areas. Proboscis length showed a significant negative relationship with the percentage of pasture. Wing loading and local abundance were not related to the environmental conditions within sites. Our results reflect the highly adaptable nature of B. terrestris and its ability to thrive in different environments, which may have facilitated the bumblebee's successful invasion across Tasmania.


Subject(s)
Hymenoptera , Bees , Animals , Ecosystem , Australia , Body Size , Climate
7.
Ambio ; 52(3): 571-584, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36565407

ABSTRACT

Alteration of natural disturbances in human-modified landscapes has resulted in many disturbance-dependent species becoming rare. Conservation of such species requires efforts to maintain or recreate disturbance regimes. We compared benefits of confining efforts to habitats in protected areas (a form of land sparing) versus integrating them with general management of production land (a form of land sharing), using two examples: fire in forests and grazing in semi-natural grasslands. We reviewed empirical studies from the temperate northern hemisphere assessing effects of disturbances in protected and non-protected areas, and compiled information from organisations governing and implementing disturbances in Sweden. We found advantages with protection of areas related to temporal continuity and quality of disturbances, but the spatial extent of disturbances is higher on production land. This suggests that an approach where land sparing is complemented with land sharing will be most effective for preservation of disturbance-dependent species in forests and semi-natural grasslands.


Subject(s)
Conservation of Natural Resources , Fires , Humans , Conservation of Natural Resources/methods , Ecosystem , Forests , Sweden , Biodiversity
8.
PLoS One ; 17(9): e0273851, 2022.
Article in English | MEDLINE | ID: mdl-36074788

ABSTRACT

Neonicotinoid insecticides applied to flowering crops can have negative impacts on bees, with implications for crop pollination. To assess if exposure to the neonicotinoid clothianidin via a treated crop (rapeseed) affected bee behaviour, pollination performance (to strawberry), and bee reproduction, we provided each of 12 outdoor cages with rapeseed (autumn-sown plants complemented with a few spring-sown plants to extend the flowering period) grown from either clothianidin-treated or untreated (control) seeds, together with strawberry plants and a small population of red mason bees (Osmia bicornis). We expected clothianidin to reduce bee foraging activity, resulting in impaired strawberry pollination and bee reproduction. During the early stage of the experiment, we observed no difference between treatments in the length of entire foraging trips, or the combined number of rapeseed and strawberry flowers that the bees visited during these trips. During the later stage of the experiment, we instead determined the time a female took to visit 10 rapeseed flowers, as a proxy for foraging performance. We found that they were 10% slower in clothianidin cages. Strawberries weighed less in clothianidin cages, suggesting reduced pollination performance, but we were unable to relate this to reduced foraging activity, because the strawberry flowers received equally many visits in the two treatments. Clothianidin-exposed females sealed their nests less often, but offspring number, sex ratio and weight were similar between treatments. Observed effects on bee behaviour appeared by the end of the experiment, possibly because of accumulated effects of exposure, reduced bee longevity, or higher sensitivity of the protocols we used during the later phase of the experiment. Although the lack of a mechanistic explanation calls for interpreting the results with cautiousness, the lower strawberry weight in clothianidin cages highlights the importance of understanding complex effects of plant protection products, which could have wider consequences than those on directly exposed organisms.


Subject(s)
Brassica napus , Brassica rapa , Fragaria , Insecticides , Animals , Bees , Female , Flowers/chemistry , Guanidines , Insecticides/pharmacology , Neonicotinoids/toxicity , Pollination , Seeds/chemistry , Thiazoles
9.
Ecology ; 103(11): e3809, 2022 11.
Article in English | MEDLINE | ID: mdl-35792515

ABSTRACT

Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.


Subject(s)
Appetitive Behavior , Bees , Body Size , Social Behavior , Animals , Bees/anatomy & histology , Bees/physiology , Biodiversity , Body Size/physiology , Ecology , Ecosystem , Appetitive Behavior/physiology
10.
Ecol Appl ; 32(8): e2696, 2022 12.
Article in English | MEDLINE | ID: mdl-35735258

ABSTRACT

Control of crop pests by shifting host plant availability and natural enemy activity at landscape scales has great potential to enhance the sustainability of agriculture. However, mainstreaming natural pest control requires improved understanding of how its benefits can be realized across a variety of agroecological contexts. Empirical studies suggest significant but highly variable responses of natural pest control to land-use change. Current ecological models are either too specific to provide insight across agroecosystems or too generic to guide management with actionable predictions. We suggest obtaining the full benefit of available empirical, theoretical, and methodological knowledge by combining trait-mediated understanding from correlative studies with the explicit representation of causal relationships achieved by mechanistic modeling. To link these frameworks, we adapt the concept of archetypes, or context-specific generalizations, from sustainability science. Similar responses of natural pest control to land-use gradients across cases that share key attributes, such as functional traits of focal organisms, indicate general processes that drive system behavior in a context-sensitive manner. Based on such observations of natural pest control, a systematic definition of archetypes can provide the basis for mechanistic models of intermediate generality that cover all major agroecosystems worldwide. Example applications demonstrate the potential for upscaling understanding and improving predictions of natural pest control, based on knowledge transfer and scientific synthesis. A broader application of this mechanistic archetype approach promises to enhance ecology's contribution to natural resource management across diverse regions and social-ecological contexts.


Subject(s)
Ecosystem , Pest Control, Biological , Pest Control , Agriculture , Crops, Agricultural , Natural Resources
11.
Evol Appl ; 15(3): 365-382, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35386397

ABSTRACT

The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.

12.
Ecol Appl ; 32(4): e2576, 2022 06.
Article in English | MEDLINE | ID: mdl-35191107

ABSTRACT

Biodiversity-benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide-sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm-scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large-scale shifts in species composition were driven by both species-specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable-adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most.


Subject(s)
Herbicides , Organic Agriculture , Agriculture/methods , Biodiversity , Ecosystem , Organic Agriculture/methods , Plants
13.
Ecology ; 103(3): e3614, 2022 03.
Article in English | MEDLINE | ID: mdl-34921678

ABSTRACT

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Subject(s)
Ecosystem , Pollination , Animals , Bees , Crops, Agricultural , Flowers , Insecta
14.
Proc Biol Sci ; 288(1947): 20210212, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33726596

ABSTRACT

While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.


Subject(s)
Ecosystem , Pollination , Agriculture , Animals , Bees , Biodiversity , Crops, Agricultural , Insecta
15.
Sci Rep ; 10(1): 4232, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144284

ABSTRACT

Agricultural production systems are affected by complex interactions between social and ecological factors, which are often hard to integrate in a common analytical framework. We evaluated differences in crop production among farms by integrating components of several related research disciplines in a single socio-ecological analysis. Specifically, we evaluated spring barley (Hordeum vulgare, L.) performance on 34 farms (organic and conventional) in two agro-ecological zones to unravel the importance of ecological, crop and management factors in the performance of a standard crop. We used Projections to Latent Structures (PLS), a simple but robust analytical tool widely utilized in research disciplines dealing with complex systems (e.g. social sciences and chemometrics), but infrequently in agricultural sciences. We show that barley performance on organic farms was affected by previous management, landscape structure, and soil quality, in contrast to conventional farms where external inputs were the main factors affecting biomass and grain yield. This indicates that more complex management strategies are required in organic than in conventional farming systems. We conclude that the PLS method combining socio-ecological and biophysical factors provides improved understanding of the various interacting factors determining crop performance and can help identify where improvements in the agricultural system are most likely to be effective.


Subject(s)
Agriculture , Crop Production , Crops, Agricultural , Social Environment , Algorithms , Ecology , Farms , Models, Theoretical
16.
J Evol Biol ; 33(10): 1452-1467, 2020 10.
Article in English | MEDLINE | ID: mdl-33463845

ABSTRACT

Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.


Subject(s)
Flowers/physiology , Genetic Fitness , Plantaginaceae/genetics , Pollination , Selection, Genetic , Pollen , Seeds/growth & development
17.
Sci Adv ; 5(10): eaax0121, 2019 10.
Article in English | MEDLINE | ID: mdl-31663019

ABSTRACT

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Subject(s)
Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Agriculture/methods , Biodiversity , Crop Production/methods , Ecosystem , Humans , Pest Control, Biological/methods , Pollination/physiology
18.
AoB Plants ; 11(2): plz018, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31024680

ABSTRACT

Disentangling the contributions of different processes that influence plant recruitment, such as competition and seed dispersal, is important given the increased human-mediated changes in tropical forest ecosystems. Previous studies have shown that seedling communities in an Afrotropical rainforest in southeastern Nigeria are strongly affected by the loss of important seed-dispersing primates, including Cross River gorillas (Gorilla gorilla diehli), chimpanzee (Pan troglodytes elioti) and drill (Mandrillus leucophaeus). Here we study how germination and survival of tree seedlings are affected by competition and reduced seed dispersal in three contiguous forest reserves, in southeastern Nigeria, with similar mature tree species composition and structure. We use an experimental design aimed at manipulating the effect of competition among seedlings in three protected and three hunted sites within the reserves. We use a total of sixty 5 × 5 m plots of three types: plots cleared of all seedlings, plots selectively cleared of all primate-dispersed seedlings and control plots. All seedlings were identified, measured, assigned to dispersal mode and tagged, and after 1 year we evaluated survival, mortality and new recruits. We found that in hunted sites germination of abiotically dispersed species was over four times higher in cleared plots compared to control plots, whereas germination of primate-dispersed species was the same, which indicated that dispersal limitation was the dominant force in seedling recruitment in hunted sites. This was supported by the fact that the germination of all dispersal modes in the selectively cleared plots in protected sites was similar to the control plots in the same sites, but germination of abiotically dispersed species was significantly lower than in cleared plots in hunted sites. Competition among seedlings was mostly evident from the fact that 75 % more seedlings of primate-dispersed species germinated in cleared compared to control plots in protected sites. We conclude that inter-seedling competition may be irrelevant to seedling recruitment in hunted sites, where dispersal limitation appears to be a much stronger force shaping the seedling plant community, and thus hunting indirectly reverses the importance of competition and dispersal limitation in structuring seedling communities.

19.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30957401

ABSTRACT

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Subject(s)
Biodiversity , Crops, Agricultural , Ecosystem , Agriculture , Animals , Europe , Pollination
20.
Ecol Appl ; 29(4): e01875, 2019 06.
Article in English | MEDLINE | ID: mdl-30761672

ABSTRACT

Declines in European farmland birds over past decades have been attributed to the combined effects of agricultural intensification and abandonment. Consequently, aspirations to stop declines should focus attention on reversing these changes through voluntary or policy-driven interventions. The design of such interventions should ideally be informed by scientific knowledge of which aspects of the transformation of agricultural landscapes have contributed to the farmland bird declines. Declines may be associated with loss of natural habitats or the intensification and homogenization of land use management on production land, and furthermore, these changes may interact. Here, we applied an orthogonal design exploiting spatial variation in land use in a major agricultural region of Sweden to seek evidence for benefits to farmland birds of reversing some of the intensifications on and among arable fields and whether effects are modified by the availability of seminatural habitats (pastures and field borders) in the landscape. We accounted for the potentially confounding effect of interactions between species by using a joint species distribution model explicitly controlling for additional variation and covariation among species. We found that interventions aimed specifically at land in production could provide benefits to farmland birds. Landscapes with a higher proportion leys or fallows and/or with a more diverse set of crops held higher abundances of most farmland birds. However, effects were only apparent in landscapes with low availability of seminatural habitats and were sometimes even negative in landscapes with high amounts of such habitats, demonstrating context dependence. Even if we found little evidence of interactions between species, the joint modeling approach provided several benefits. It allowed information to be shared between species making analyses robust to uncertainty due to low abundances and provided direct information about the mean and variability in effects of studied predictors among species. We also found that care needs to be taken regarding prior and distributional assumptions as the importance of species interactions might otherwise be overstated. We conclude that this approach is well suited for evaluating agricultural policies by providing evidence for or against certain interventions or to be linked to policy scenarios of land use change.


Subject(s)
Biodiversity , Birds , Agriculture , Animals , Ecosystem , Farms , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...