Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37184347

ABSTRACT

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

2.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095639

ABSTRACT

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

3.
Rev Sci Instrum ; 91(4): 043106, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357691

ABSTRACT

Sandia's Z Pulsed Power Facility is able to dynamically compress matter to extreme states with exceptional uniformity, duration, and size, which are ideal for investigating fundamental material properties of high energy density conditions. X-ray diffraction (XRD) is a key atomic scale probe since it provides direct observation of the compression and strain of the crystal lattice and is used to detect, identify, and quantify phase transitions. Because of the destructive nature of Z-Dynamic Material Property (DMP) experiments and low signal vs background emission levels of XRD, it is very challenging to detect a diffraction signal close to the Z-DMP load and to recover the data. We have developed a new Spherical Crystal Diffraction Imager (SCDI) diagnostic to relay and image the diffracted x-ray pattern away from the load debris field. The SCDI diagnostic utilizes the Z-Beamlet laser to generate 6.2-keV Mn-Heα x rays to probe a shock-compressed material on the Z-DMP load. A spherically bent crystal composed of highly oriented pyrolytic graphite is used to collect and focus the diffracted x rays into a 1-in. thick tungsten housing, where an image plate is used to record the data.

4.
Rev Sci Instrum ; 89(10): 10F102, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399823

ABSTRACT

X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.

5.
Rev Sci Instrum ; 89(10): 105106, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399920

ABSTRACT

Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index ß can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia's Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30-50 ns margin of safety by blocking a pulse from leaving ZBL's regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.

6.
Rev Sci Instrum ; 88(10): 103503, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092482

ABSTRACT

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility-a 30 MA, 100 ns rise-time, pulsed-power driver-use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

7.
Rev Sci Instrum ; 86(4): 043504, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933859

ABSTRACT

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

8.
Chem Sci ; 6(7): 4054-4059, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-29218171

ABSTRACT

Reaction with halogen vapor allows us to post-synthetically exchange halides in both three- (3D) and two-dimensional (2D) organic-inorganic metal-halide perovskites. Films of 3D Pb-I perovskites cleanly convert to films of Pb-Br or Pb-Cl perovskites upon exposure to Br2 or Cl2 gas, respectively. This gas-solid reaction provides a simple method to produce the high-quality Pb-Br or Pb-Cl perovskite films required for optoelectronic applications. Reactivity with halogens can be extended to the organic layers in 2D metal-halide perovskites. Here, terminal alkene groups placed between the inorganic layers can capture Br2 gas through chemisorption to form dibromoalkanes. This reaction's selectivity for Br2 over I2 allows us to scrub Br2 to obtain high-purity I2 gas streams. We also observe unusual halogen transfer between the inorganic and organic layers within a single perovskite structure. Remarkably, the perovskite's crystallinity is retained during these massive structural rearrangements.

9.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375714

ABSTRACT

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

10.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375715

ABSTRACT

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

11.
Phys Rev Lett ; 109(13): 135004, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030097

ABSTRACT

The implosions of initially solid beryllium liners (tubes) have been imaged with penetrating radiography through to stagnation. These novel radiographic data reveal a high degree of azimuthal correlation in the evolving magneto-Rayleigh-Taylor structure at times just prior to (and during) stagnation, providing stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities. To emphasize this point, comparisons to 2D and 3D radiation magnetohydrodynamics simulations are also presented. Both agreement and substantial disagreement have been found, depending on how the liner's initial outer surface finish was modeled. The various models tested, and the physical implications of these models are discussed. These comparisons exemplify the importance of the experimental data obtained.

12.
Diabet Med ; 29(3): 313-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21883438

ABSTRACT

AIM: To investigate the cost-effectiveness of liraglutide as add-on to metformin vs. glimepiride or sitagliptin in patients with Type 2 diabetes uncontrolled with first-line metformin. METHODS: Data were sourced from a clinical trial comparing liraglutide vs. glimepiride, both in combination with metformin, and a clinical trial comparing liraglutide vs. sitagliptin, both as add-on to metformin. Only the subgroup of patients in whom liraglutide was added to metformin monotherapy was included in the cost-utility analysis. The CORE Diabetes Model was used to simulate outcomes and costs with liraglutide 1.2 and 1.8 mg vs. glimepiride and vs. sitagliptin over patients' lifetimes. Treatment effects were taken directly from the trials. Costs and outcomes were discounted at 3.5% per annum and costs were accounted from a third-party payer (UK National Health System) perspective. RESULTS: Treatment with liraglutide 1.2 and 1.8 mg resulted, respectively, in mean increases in quality-adjusted life expectancy of 0.32 ± 0.15 and 0.28 ± 0.14 quality-adjusted life years vs. glimepiride, and 0.19 ± 0.15 and 0.31 ± 0.15 quality-adjusted life years vs. sitagliptin, and was associated with higher costs of £ 3003 ± £ 678 and £ 4688 ± £ 639 vs. glimepiride, and £ 1842 ± £ 751 and £ 3224 ± £ 683 vs. sitagliptin, over a patient's lifetime. Both liraglutide doses were cost-effective, with incremental cost-effectiveness ratios of £ 9449 and £ 16,501 per quality-adjusted life year gained vs. glimepiride, and £ 9851 and £ 10,465 per quality-adjusted life year gained vs. sitagliptin, respectively. CONCLUSIONS: Liraglutide, added to metformin monotherapy, is a cost-effective option for the treatment of Type 2 diabetes in a UK setting.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/analogs & derivatives , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/economics , Metformin/administration & dosage , Pyrazines/economics , Sulfonylurea Compounds/economics , Triazoles/economics , Adolescent , Adult , Aged , Aged, 80 and over , Body Mass Index , Cost-Benefit Analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/economics , Female , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/economics , Humans , Liraglutide , Male , Metformin/economics , Middle Aged , Pyrazines/administration & dosage , Quality-Adjusted Life Years , Sitagliptin Phosphate , Sulfonylurea Compounds/administration & dosage , Treatment Outcome , Triazoles/administration & dosage , United Kingdom , Young Adult
13.
Acta Physiol (Oxf) ; 203(4): 441-55, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21707930

ABSTRACT

AIM: The mechanisms underlying the fatigue that occurs in human muscle following sustained activity are thought to reside in one or more of the excitation-contraction coupling (E-C coupling) processes. This study investigated the association between the changes in select E-C coupling properties and the impairment in force generation that occurs with prolonged cycling. METHODS: Ten volunteers with a peak aerobic power (VO(2peak)) of 2.95 ± 0.27 L min(-1) (mean ± SE), exercised for 2 h at 62 ± 1.3%. Quadriceps function was assessed and tissue properties (vastus lateralis) were measured prior to (E1-pre) and following (E1-post) exercise and on three consecutive days of recovery (R1, R2 and R3). RESULTS: While exercise failed to depress the maximal activity (V(max) ) of the Na(+) ,K(+) -ATPase (P = 0.10), reductions (P < 0.05) were found at E1-post in V(max) of sarcoplasmic reticulum Ca(2+) -ATPase (-22%), Ca(2+) -uptake (-26%) and phase 1(-33%) and 2 (-38%) Ca(2+) -release. Both V(max) and Ca(2+) -release (phase 2) recovered by R1, whereas Ca(2+) -uptake and Ca(2+) -release (phase 1) remained depressed (P < 0.05) at R1 and at R1 and R2 and possibly R3 (P < 0.06) respectively. Compared with E1-pre, fatigue was observed (P < 0.05) at 10 Hz electrical stimulation at E1-post (-56%), which persisted throughout recovery. The exercise increased (P < 0.05) overall content of the Na(+), K(+)-ATPase (R1, R2 and R3) and the isoforms ß2 (R1, R2 and R3) and ß3 (R3), but not ß1 or the α-isoforms (α1, α2 and α3). CONCLUSION: These results suggest a possible direct role for Ca(2+)-release in fatigue and demonstrate a single exercise session can induce overlapping perturbations and adaptations (particularly to the Na(+), K(+)-ATPase).


Subject(s)
Bicycling/physiology , Excitation Contraction Coupling , Exercise/physiology , Muscle Fatigue , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Female , Humans , Isoenzymes/metabolism , Male , Pulmonary Gas Exchange , Young Adult
14.
Eur J Appl Physiol ; 111(5): 827-37, 2011 May.
Article in English | MEDLINE | ID: mdl-21046138

ABSTRACT

A single session of prolonged work was employed to investigate changes in selected metabolic, transporter and enzymatic properties in muscle. Ten active but untrained volunteers (weight = 73.9 ± 4.2 kg) with a peak aerobic power [Formula: see text] of 2.95 ± 0.27 l min(-1), cycled for 2 h at 62 ± 1.3% [Formula: see text] Tissue extraction from the vastus lateralis occurred prior to (E1-Pre) and following (E1-Post) exercise and on 3 consecutive days of recovery (R1, R2, R3). The exercise resulted in decreases (P < 0.05) in ATP (-9.3%) and creatine phosphate (-49%) and increases in lactate (+100%), calculated free ADP (+253%) and free AMP (+1,207%), all of which recovered to E1-Pre by R1. Glycogen concentration, which was depressed (P < 0.05) by 75% at E1-Post, did not recover until R3. Compared to E1-Pre, the cycling also resulted in decreases (P < 0.05) in the activities of cytochrome c oxidase, phosphorylase, and hexokinase but not in citrate synthase (CS) or 3-hydroxy-CoA dehydrogenase at E1-Post. With the exception of CS, which was elevated (P < 0.05) at R3, all enzyme activities were not different from E1-Pre during recovery. For the glucose (GLUT1, GLUT4) and monocarboxylate (MCT1, MCT4) transporters, changes in expression levels (P < 0.05) were only observed for GLUT1 at R1 (+42%) and R3 (+33%). It is concluded that the metabolic stress produced by prolonged exercise is reversed by 1 day of recovery. One day of exercise also resulted in a potential upregulation in the citric acid cycle and glucose transport capabilities, adaptations which are expressed at variable recovery durations.


Subject(s)
Bicycling/physiology , Glucose Transport Proteins, Facilitative/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle, Skeletal/metabolism , Female , Glycogen/metabolism , Humans , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Phosphocreatine/metabolism , Quadriceps Muscle/metabolism , Young Adult
15.
Phys Rev Lett ; 105(18): 185001, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21231110

ABSTRACT

The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (∼100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 µm were used to seed the instability. Radiographs with 15 µm resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 µm wavelengths.

16.
Gait Posture ; 31(2): 164-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19854655

ABSTRACT

Stair climbing can be measured using body-fixed sensors, whereby the origin and axes of the coordinate system are fixed with respect to the geometry of a body segment. These sensors can be part of a portable system, which provides the possibility to collect data in complex real-life environments. However due to the fact that the sensors are body-fixed, difficulties in determining the ground-based parameters of stair ascent can occur. The purpose of this study is to present a new approach for determining initial contacts based on a multi-chain biomechanical model combined with a new analysis method, in which relative hip height is compared to hip height during normal standing. Initial contacts obtained from the proposed method were compared to those obtained using an optical tracking device. An average absolute timing difference ranging from 0.04 (SD + or - 0.03) to 0.06 (+ or - 0.03) s and a root mean square error ranging from 0.05 to 0.07 s were found between the two techniques. This shows that the new approach presented in this study can be used to accurately determine initial contacts during stair ascent using portable equipment.


Subject(s)
Hip Joint/physiology , Locomotion/physiology , Posture/physiology , Adult , Algorithms , Biomechanical Phenomena , Female , Humans , Knee Joint/physiology , Male , Range of Motion, Articular/physiology , Statistics, Nonparametric
17.
Am J Physiol Regul Integr Comp Physiol ; 297(5): R1383-91, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19710384

ABSTRACT

In this study, we investigated the hypothesis that the metabolic adaptations observed during steady-state exercise soon after the onset of training would be displayed during the nonsteady period of moderate exercise and would occur in the absence of increases in peak aerobic power (Vo2peak) and in muscle oxidative potential. Nine untrained males [age = 20.8 +/- 0.70 (SE) yr] performed a cycle task at 62% Vo2peak before (Pre-T) and after (Post-T) training for 2 h/day for 5 days at task intensity. Tissue samples extracted from the vastus lateralis at 0 min (before exercise) and at 10, 60, and 180 s of exercise, indicated that at Pre-T, reductions (P < 0.05) in phosphocreatine and increases (P < 0.05) in creatine, inorganic phosphate, calculated free ADP, and free AMP occurred at 60 and 180 s but not at 10 s. At Post-T, the concentrations of all metabolites were blunted (P < 0.05) at 60 s. Training also reduced (P < 0.05) the increase in lactate and the lactate-to-pyruvate ratio observed during exercise at Pre-T. These adaptations occurred in the absence of change in Vo2peak (47.8 +/- 1.7 vs. 49.2 +/- 1.7 mlxkg(-1)xmin(-1)) and in the activities (molxkg protein(-1)xh(-1)) of succinic dehydrogenase (3.48 +/- 0.21 vs. 3.77 +/- 0.35) and citrate synthase (7.48 +/- 0.61 vs. 8.52 +/- 0.65) but not cytochrome oxidase (70.8 +/- 5.1 vs. 79.6 +/- 6.6 U/g protein; P < 0.05). It is concluded that the tighter metabolic control observed following short-term training is initially expressed during the nonsteady state, probably as a result of increases in oxidative phosphorylation that is not dependent on changes in Vo2peak while the role of oxidative potential remains uncertain.


Subject(s)
Adaptation, Physiological/physiology , Bicycling/physiology , Exercise/physiology , Muscle, Skeletal/metabolism , Blood Gas Analysis , Creatine/metabolism , Heart Rate/physiology , Humans , Lactates/metabolism , Male , Oxygen Consumption/physiology , Phosphates/metabolism , Phosphocreatine/metabolism , Pyruvates/metabolism , Time Factors , Young Adult
18.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R593-604, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19474386

ABSTRACT

This study investigated the effects of hypoxia (experiment 1) and the effects of hypoxia following short-term training (experiment 2) on metabolism in working muscle. In experiment 1, eight males with a peak aerobic power (VO2peak) of 45 +/- 1.7 ml x kg(-1) x min(-1) (x +/- SE) cycled for 15 min at 66.1 +/- 2.1% VO2peak while breathing room air [normoxia (N)] or 14% O(2) [hypoxia (H)]. In experiment 2, nine males with a VO2peak of 43.3 +/- 1.6 ml x kg(-1) x min(-1) performed a similar protocol at 60.7 +/- 1.4% VO2peak during N and during H following 5 days of submaximal exercise training (H + T). Tissue samples extracted from the vastus lateralis before exercise and at 1, 3, and 15 min of exercise indicated that compared with N, H resulted in lower (P < 0.05) concentrations (mmol/kg dry wt) of creatine phosphate and higher (P < 0.05) concentrations of creatine, inorganic phosphate, and lactate, regardless of exercise time. When the exercise was performed at H + T and compared with N, no differences were observed in creatine phosphate, creatine, inorganic phosphate, and lactate, regardless of duration. Given the well-documented effects of the short-term training model on elevating VO2 kinetics and attenuating the alterations in high-energy phosphate metabolism and lactate accumulation, it would appear that the mechanism underlying the reversal of these adaptations during H is linked to a more rapid increase in oxidative phosphorylation, mediated by increased oxygen delivery and/or mitochondrial activation.


Subject(s)
Exercise , Hypoxia/metabolism , Muscle Contraction , Oxygen Consumption , Quadriceps Muscle/metabolism , Stress, Physiological , Adaptation, Physiological , Adenine Nucleotides/metabolism , Bicycling , Glucose/metabolism , Glycolysis , Heart Rate , Humans , Hypoxia/physiopathology , Inosine Monophosphate/metabolism , Lactic Acid/blood , Male , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Phosphocreatine/metabolism , Pulmonary Gas Exchange , Quadriceps Muscle/physiopathology , Time Factors , Young Adult
19.
NMR Biomed ; 22(6): 593-600, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19259992

ABSTRACT

Colorectal cancer is one of the most common cancers in the western world. Its early detection has been found to improve the prognosis of the patient, providing a wide window of opportunity for successful therapeutic interventions. However, current diagnostic techniques all have some limitations; there is a need to develop a better technique for routine screening purposes. We present a new methodology based on magnetic resonance spectroscopy of fecal extracts for the non-invasive detection of colorectal cancer. Five hundred twenty-three human subjects (412 with no colonic neoplasia and 111 with colorectal cancer, who were scheduled for colonoscopy or surgery) were recruited to donate a single sample of stool. One-dimensional (1)H magnetic resonance spectroscopy (MRS) experiments were performed on the supernatant of aqueous dispersions of the stool samples. Using a statistical classification strategy, several multivariate classifiers were developed. Applying the preprocessing, feature selection and classifier development stages of the Statistical Classification Strategy led to approximately 87% average balanced sensitivity and specificity for both training and monitoring sets, improving to approximately 92% when only crisp results, i.e. class assignment probabilities > or =75%, are considered. These results indicate that (1)H magnetic resonance spectroscopy of human fecal extracts, combined with appropriate data analysis methodology, has the potential to detect colorectal neoplasia accurately and reliably, and could be a useful addition to the current screening tools.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/diagnosis , Feces/chemistry , Nuclear Magnetic Resonance, Biomolecular , Algorithms , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/pathology , Humans , Nuclear Magnetic Resonance, Biomolecular/instrumentation , Nuclear Magnetic Resonance, Biomolecular/methods , Prognosis , Reproducibility of Results , Sensitivity and Specificity
20.
Rev Sci Instrum ; 79(10): 10E914, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044569

ABSTRACT

When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns gate time) digital x-ray camera is being developed [G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)] to extend the system to "four-frame" and markedly improve the signal-to-noise ratio. [At present, time-integrating Fuji BAS-TR2025 image plate (scanned with a Fuji BAS-5000 device) forms the time-integrated image-plane detector.].

SELECTION OF CITATIONS
SEARCH DETAIL
...