Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699337

ABSTRACT

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.

2.
medRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766175

ABSTRACT

Importance: Many patients will develop more than one skin cancer, however most research to date has examined only case status. Objective: Describe the frequency and timing of the treatment of multiple skin cancers in individual patients over time. Design: Longitudinal claims and electronic health record-based cohort study. Setting: Vanderbilt University Medical Center database called the Synthetic Derivative, VA, Medicare, Optum Clinformatics® Data Mart Database, IBM Marketscan. Participants: All patients with a Current Procedural Terminology code for the surgical management of a skin cancer in each of five cohorts. Exposures: None. Main Outcomes and Measures: The number of CPT codes for skin cancer treatment in each individual occurring on the same day as an ICD code for skin cancer over time. Results: Our cohort included 5,508,374 patients and 13,102,123 total skin cancers treated. Conclusions and Relevance: Nearly half of patients treated for skin cancer were treated for more than one skin cancer. Patients who have not developed a second skin cancer by 2 years after the first are unlikely to develop multiple skin cancers within the following 5 years. Better data formatting will allow for improved granularity in identifying individuals at high risk for multiple skin cancers and those unlikely to benefit from continued annual surveillance. Resource planning should take into account not just the number of skin cancer cases, but the individual burden of disease. Key points: Question: How many skin cancer patients are treated for more than one skin cancer and how soon after the first skin cancer do they occur?Findings: 43% of patients were treated for more than one skin cancer, the majority of which occurred within two years after the initial skin cancer. Just 3% of patients were treated for 10 or more skin cancers, but these patients accounted for 22% of all of the skin cancer treatments in the cohort Meaning: Nearly half of all skin cancer patients were treated for multiple skin cancers, while those without a second skin cancer after two years were less likely to be treated for a subsequent skin cancer within the next five years.

4.
Article in English | MEDLINE | ID: mdl-36304178

ABSTRACT

Multi-modal learning (e.g., integrating pathological images with genomic features) tends to improve the accuracy of cancer diagnosis and prognosis as compared to learning with a single modality. However, missing data is a common problem in clinical practice, i.e., not every patient has all modalities available. Most of the previous works directly discarded samples with missing modalities, which might lose information in these data and increase the likelihood of overfitting. In this work, we generalize the multi-modal learning in cancer diagnosis with the capacity of dealing with missing data using histological images and genomic data. Our integrated model can utilize all available data from patients with both complete and partial modalities. The experiments on the public TCGA-GBM and TCGA-LGG datasets show that the data with missing modalities can contribute to multi-modal learning, which improves the model performance in grade classification of glioma cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...