Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36056752

ABSTRACT

Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanomedicine , Nanoparticles , Mice , Animals , Nanomedicine/methods , Nanoparticles/therapeutic use , Drug Delivery Systems , Nanotechnology/methods , Brain
2.
Nano Lett ; 20(8): 5765-5772, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32639738

ABSTRACT

Magnetoelectric coefficient values of above 5 and 2 V cm-1 Oe-1 in 20 nm CoFe2O4-BaTiO3 and NiFe2O4-BaTiO3 core-shell magnetoelectric nanoparticles were demonstrated. These colossal values, compared to 0.1 V cm-1 Oe-1 commonly reported for the 0-3 system, are attributed to (i) the heterostructural lattice-matched interface between the magnetostrictive core and the piezoelectric shell, confirmed through transmission electron microscopy, and (ii) in situ scanning tunneling microscopy nanoprobe-based ME characterization. The nanoprobe technique allows measurements of the ME effect at a single-nanoparticle level which avoids the charge leakage problem of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information processing to nanomedicine and brain-machine interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...