Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Ann Bot ; 132(4): 627-654, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37698538

ABSTRACT

BACKGROUND AND SCOPE: The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS: We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.


Subject(s)
Crassulacean Acid Metabolism , Photosynthesis , Humans , Phylogeny , Photosynthesis/physiology , Plants/genetics , Plants/metabolism , Earth, Planet
2.
Ann Bot ; 132(4): 753-770, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37642245

ABSTRACT

BACKGROUND AND AIMS: CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS: Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS: The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.


Subject(s)
Carbon Dioxide , Photosynthesis , Plants , Phylogeny , Plants/classification , Plants/genetics , Plants/metabolism , Water
3.
New Phytol ; 239(6): 2180-2196, 2023 09.
Article in English | MEDLINE | ID: mdl-37537720

ABSTRACT

Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.


Subject(s)
Agave , Crassulacean Acid Metabolism , Agave/metabolism , Photosynthesis , Crops, Agricultural/metabolism , Carbon/metabolism
4.
New Phytol ; 233(2): 599-609, 2022 01.
Article in English | MEDLINE | ID: mdl-34637529

ABSTRACT

There is currently considerable interest in the prospects for bioengineering crassulacean acid metabolism (CAM) photosynthesis - or key elements associated with it, such as increased water-use efficiency - into C3 plants. Resolving how CAM photosynthesis evolved from the ancestral C3 pathway could provide valuable insights into the targets for such bioengineering efforts. It has been proposed that the ability to accumulate organic acids at night may be common among C3 plants, and that the transition to CAM might simply require enhancement of pre-existing fluxes, without the need for changes in circadian or diurnal regulation. We show, in a survey encompassing 40 families of vascular plants, that nocturnal acidification is a feature entirely restricted to CAM species. Although many C3 species can synthesize malate during the light period, we argue that the switch to night-time malic acid accumulation requires a fundamental metabolic reprogramming that couples glycolytic breakdown of storage carbohydrate to the process of net dark CO2 fixation. This central element of the CAM pathway, even when expressed at a low level, represents a biochemical capability not seen in C3 plants, and so is better regarded as a discrete evolutionary innovation than as part of a metabolic continuum between C3 and CAM.


Subject(s)
Crassulacean Acid Metabolism , Photosynthesis , Carbon Dioxide/metabolism , Photosynthesis/physiology , Plants/metabolism , Water/metabolism
5.
Plants (Basel) ; 10(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921686

ABSTRACT

Odontarrhena serpyllifolia (Desf.) Jord. & Fourr. (=Alyssum serpyllifolium Desf.) occurs in the Iberian Peninsula and adjacent areas on a variety of soils including both limestone and serpentine (ultramafic) substrates. Populations endemic to serpentine are known to hyperaccumulate nickel, and on account of this remarkable phenotype have, at times, been proposed for recognition as taxonomically distinct subspecies or even species. It remains unclear, however, to what extent variation in nickel hyperaccumulation within this taxon merely reflects differences in the substrate, or whether the different populations show local adaptation to their particular habitats. To help clarify the physiological basis of variation in nickel hyperaccumulation among these populations, 3 serpentine accessions and 3 limestone accessions were cultivated hydroponically under common-garden conditions incorporating a range of Ni concentrations, along with 2 closely related non-accumulator species, Clypeola jonthlaspi L. and Alyssum montanum L. As a group, serpentine accessions of O. serpyllifolia were able to tolerate Ni concentrations approximately 10-fold higher than limestone accessions, but a continuous spectrum of Ni tolerance was observed among populations, with the least tolerant serpentine accession not being significantly different from the most tolerant limestone accession. Serpentine accessions maintained relatively constant tissue concentrations of Ca, Mg, K, and Fe across the whole range of Ni exposures, whereas in the limestone accessions, these elements fluctuated widely in response to Ni toxicity. Hyperaccumulation of Ni, defined here as foliar Ni concentrations exceeding 1g kg-1 of dry biomass in plants not showing significant growth reduction, occurred in all accessions of O. serpyllifolia, but the higher Ni tolerance of serpentine accessions allowed them to hyperaccumulate more strongly. Of the reference species, C. jonthlaspi responded similarly to the limestone accessions of O. serpyllifolia, whereas A. montanum displayed by far the lowest degree of Ni tolerance and exhibited low foliar Ni concentrations, which only exceeded 1 g kg-1 in plants showing severe Ni toxicity. The continuous spectrum of physiological responses among these accessions does not lend support to segregation of the serpentine populations of O. serpyllifolia as distinct species. However, the pronounced differences in degrees of Ni tolerance, hyperaccumulation, and elemental homeostasis observed among these accessions under common-garden conditions argues for the existence of population-level adaptation to their local substrates.

6.
Funct Plant Biol ; 48(7): 683-690, 2021 06.
Article in English | MEDLINE | ID: mdl-33287950

ABSTRACT

Pilea peperomioides Diels (Urticaceae) is a semi-succulent herbaceous species native to south-western China that has become popular in cultivation as an ornamental plant. To investigate whether this species possesses the capacity for CAM photosynthesis, measurements were made of CO2 gas exchange and titratable acidity in plants under both well-watered and water-deficit conditions. Plants were found to assimilate CO2 almost exclusively in the light via C3 photosynthesis. However, distinct transient reductions in the rate of net nocturnal CO2 release were consistently observed during the course of the dark period, and under water-deficit conditions one plant exhibited a brief period of net nocturnal CO2 uptake, providing unequivocal evidence of CAM activity. Furthermore, nocturnal increases in titratable acidity in both leaf laminas and petioles were observed in all plants exposed to wet-dry-wet cycles. This is the first report of CAM in the family Urticaceae. The results are discussed in relation to the phylogenetic position of Pilea and the partially shaded montane habitats in which this species is typically found. An updated list of all plant families currently known to contain species with CAM is presented.


Subject(s)
Urticaceae , Carbon Dioxide , China , Crassulacean Acid Metabolism , Photosynthesis , Phylogeny
7.
Bioresour Technol ; 297: 122262, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31711909

ABSTRACT

In this work, five Crassulacean Acid Metabolism (CAM) species from the five different genera (Agave, Ananas, Euphorbia, Kalanchoe, and Opuntia) were selected as alternative feedstocks and their biochemical methane potentials (BMP) were investigated. Batch assays were performed using sludge and rumen fluid as inocula under uncontrolled pH and at mesophilic temperature (39 °C). Mean methane yields from the CAM plants inoculated with AD sludge ranged from 281 to 382 ml/gVS. These values were not significantly different from the methane yield obtained from maize, a feedstock for biomethane and volatile fatty acid (VFA), suggesting that CAM plants may be viable as bioenergy crops on poor-quality soils in areas with low rainfall that are unsuitable for cultivation of food crops.


Subject(s)
Agave , Sewage , Anaerobiosis , Animals , Bioreactors , Fatty Acids, Volatile , Methane
8.
R Soc Open Sci ; 6(1): 172418, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800336

ABSTRACT

In the metal hyperaccumulator plant Noccaea caerulescens, zinc may provide a defence against pathogens. However, zinc accumulation is a variable trait in this species. We hypothesize that this variability affects the outcome of interactions between metal accumulation and the various constitutive and inducible defences that N. caerulescens shares with non-accumulator plants. We compare zinc concentrations, glucosinolate concentrations and inducible stress responses, including reactive oxygen species (ROS) and cell death, in four N. caerulescens populations, and relate these to the growth of the plant pathogen Pseudomonas syringae, its zinc tolerance mutants and Pseudomonas pathogens isolated from a natural population of N. caerulescens. The populations display strikingly different combinations of defences. Where defences are successful, pathogens are limited primarily by metals, cell death or organic defences; there is evidence of population-dependent trade-offs or synergies between these. In addition, we find evidence that Pseudomonas pathogens have the capacity to overcome any of these defences, indicating that the arms race continues. These data indicate that defensive enhancement, joint effects and trade-offs between different forms of defence are all plausible explanations for the variation we observe between populations, with factors including metal availability and metal-tolerant pathogen load probably shaping the response of each population to infection.

9.
J Exp Bot ; 69(8): 1993-2003, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29462338

ABSTRACT

Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.


Subject(s)
Ammonium Compounds/metabolism , Antioxidants/metabolism , Bromeliaceae/metabolism , Malates/metabolism , Photosynthesis , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Biological Transport , Bromeliaceae/genetics , Catalase/genetics , Catalase/metabolism , Droughts , Gene Expression Regulation, Plant , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Water/metabolism
10.
Nat Commun ; 8(1): 1899, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196618

ABSTRACT

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.


Subject(s)
Acids/metabolism , Evolution, Molecular , Genome, Plant , Kalanchoe/genetics , Carbon Dioxide/metabolism , Gene Duplication , Kalanchoe/classification , Kalanchoe/metabolism , Photosynthesis , Phylogeny , Plants/classification , Plants/genetics , Plants/metabolism , Water/metabolism
11.
Plant J ; 92(1): 19-30, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28670834

ABSTRACT

The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C3 photosynthesis crop species.


Subject(s)
Ananas/genetics , Carbon/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Proteins/genetics , Transcriptome , Ananas/physiology , Circadian Clocks , Photosynthesis , Plant Stomata/genetics , Plant Stomata/physiology , RNA, Plant/genetics , Water/metabolism
12.
Plant Mol Biol ; 91(6): 651-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27233644

ABSTRACT

Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.


Subject(s)
Ethylenes/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Homeostasis/drug effects , Signal Transduction/drug effects
14.
Environ Sci Pollut Res Int ; 23(10): 10005-20, 2016 05.
Article in English | MEDLINE | ID: mdl-26865485

ABSTRACT

Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10-20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.


Subject(s)
Copper/pharmacology , Soil Pollutants/pharmacology , Verbascum/drug effects , Zinc/pharmacology , Copper/analysis , Copper/metabolism , Environmental Pollution , Mining , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil Pollutants/analysis , Verbascum/growth & development , Verbascum/metabolism , Zinc/analysis , Zinc/metabolism
15.
New Phytol ; 208(2): 469-81, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26192467

ABSTRACT

Crassulacean acid metabolism (CAM) photosynthesis is an adaptation to water and atmospheric CO2 deficits that has been linked to diversification in dry-adapted plants. We investigated whether CAM evolution can be associated with the availability of new or alternative niches, using Eulophiinae orchids as a case study. Carbon isotope ratios, geographical and climate data, fossil records and DNA sequences were used to: assess the prevalence of CAM in Eulophiinae orchids; characterize the ecological niche of extant taxa; infer divergence times; and estimate whether CAM is associated with niche shifts. CAM evolved in four terrestrial lineages during the late Miocene/Pliocene, which have uneven diversification patterns. These lineages originated in humid habitats and colonized dry/seasonally dry environments in Africa and Madagascar. Additional key features (variegation, heterophylly) evolved in the most species-rich CAM lineages. Dry habitats were also colonized by a lineage that includes putative mycoheterotrophic taxa. These findings indicate that the switch to CAM is associated with environmental change. With its suite of adaptive traits, this group of orchids represents a unique opportunity to study the adaptations to dry environments, especially in the face of projected global aridification.


Subject(s)
Biological Evolution , Carboxylic Acids/metabolism , Ecosystem , Orchidaceae/physiology , Photosynthesis , Biodiversity , Carbon Isotopes , Madagascar , Phylogeny , Principal Component Analysis , Time Factors
16.
New Phytol ; 207(3): 491-504, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26153373

ABSTRACT

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.


Subject(s)
Biofuels , Carboxylic Acids/metabolism , Droughts , Food , Hot Temperature , Research
17.
New Phytol ; 208(1): 73-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25975197

ABSTRACT

The key components of crassulacean acid metabolism (CAM) - nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period - are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosynthesis is highly variable. Depending upon species, ontogeny and environment, the contribution of nocturnal CO2 fixation to 24-h carbon gain can range continuously from close to 0% to 100%. Nevertheless, not all possible combinations of light and dark CO2 fixation appear equally common. Large-scale surveys of carbon-isotope ratios typically show a strongly bimodal frequency distribution, with relatively few intermediate values. Recent research has revealed that many species capable of low-level CAM activity are nested within the peak of C3 -type isotope signatures. While questions remain concerning the adaptive significance of dark CO2 fixation in such species, plants with low-level CAM should prove valuable models for investigating the discrete changes in genetic architecture and gene expression that have enabled the evolutionary transition from C3 to CAM.


Subject(s)
Adaptation, Physiological , Biological Evolution , Carbon/metabolism , Phenotype , Photosynthesis , Plants , Water/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Ecosystem , Genome, Plant , Light , Plant Transpiration , Plants/genetics , Plants/metabolism
18.
Plant J ; 81(5): 651-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25602029

ABSTRACT

Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development.


Subject(s)
Amino Acids/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Aspartic Acid/metabolism , Biological Transport , Dipeptides/metabolism , Fruit/cytology , Fruit/genetics , Genes, Reporter , Glutamic Acid/metabolism , Intracellular Membranes/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Proteome , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/metabolism , Vacuoles/metabolism , gamma-Aminobutyric Acid/metabolism
19.
Bio Protoc ; 5(24)2015 Dec 20.
Article in English | MEDLINE | ID: mdl-29085859

ABSTRACT

This protocol describes the isolation of tonoplast vesicles from tomato fruit. The vesicles isolated using this procedure are of sufficiently high purity for downstream proteomic analysis whilst remaining transport competent for functional assays. The methodology was used to study the transport of amino acids during tomato fruit ripening (Snowden et al., 2015) and based on the procedure used by Betty and Smith (Bettey and Smith, 1993). Such vesicles may be useful in further studies into the dynamic transfer of metabolites across the tonoplast for storage and metabolism during tomato fruit development.

20.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24513576

ABSTRACT

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Subject(s)
Adaptation, Biological , Bromeliaceae/genetics , Phylogeny , Biodiversity , Latin America , Southwestern United States
SELECTION OF CITATIONS
SEARCH DETAIL
...