Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Stat Plan Inference ; 198: 43-61, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007362

ABSTRACT

Connectivity studies of the brain are usually based on functional Magnetic Resonance Imaging (fMRI) experiments involving many subjects. These studies need to take into account not only the interaction between areas of a single brain but also the differences amongst those subjects. In this paper we develop a methodology called the group-structure (GS) approach that models possible heterogeneity between subjects and searches for distinct homogeneous sub-groups according to some measure that reflects the connectivity maps. We suggest a GS method that uses a novel distance based on a model selection measure, the Bayes factor. We then develop a new class of Multiregression Dynamic Models to estimate individual networks whilst acknowledging a GS type dependence structure across subjects. We compare the efficacy of this methodology to three other methods, virtual-typical-subject (VTS), individual-structure (IS) and common-structure (CS), used to infer a group network using both synthetic and real fMRI data. We find that the GS approach provides results that are both more consistent with the data and more flexible in their interpretative power than its competitors. In addition, we present two methods, the Individual Estimation of Multiple Networks (IEMN) and the Marginal Estimation of Multiple Networks (MEMN), generated from the GS approach and used to estimate all types of networks informed by an experiment -individual, homogeneous subgroups and group networks. These methods are then compared both from a theoretical perspective and in practice using real fMRI data.

2.
Plant Cell ; 18(3): 639-50, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16473970

ABSTRACT

Temperature compensation contributes to the accuracy of biological timing by preventing circadian rhythms from running more quickly at high than at low temperatures. We previously identified quantitative trait loci (QTL) with temperature-specific effects on the circadian rhythm of leaf movement, including a QTL linked to the transcription factor FLOWERING LOCUS C (FLC). We have now analyzed FLC alleles in near-isogenic lines and induced mutants to eliminate other candidate genes. We showed that FLC lengthened the circadian period specifically at 27 degrees C, contributing to temperature compensation of the circadian clock. Known upstream regulators of FLC expression in flowering time pathways similarly controlled its circadian effect. We sought to identify downstream targets of FLC regulation in the molecular mechanism of the circadian clock using genome-wide analysis to identify FLC-responsive genes and 3503 transcripts controlled by the circadian clock. A Bayesian clustering method based on Fourier coefficients allowed us to discriminate putative regulatory genes. Among rhythmic FLC-responsive genes, transcripts of the transcription factor LUX ARRHYTHMO (LUX) correlated in peak abundance with the circadian period in flc mutants. Mathematical modeling indicated that the modest change in peak LUX RNA abundance was sufficient to cause the period change due to FLC, providing a molecular target for the crosstalk between flowering time pathways and circadian regulation.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Hot Temperature , MADS Domain Proteins/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cluster Analysis , Fourier Analysis , Gene Expression Profiling , Genes, Plant , Genomics/methods , Genotype , MADS Domain Proteins/genetics , Models, Genetic , Nuclear Proteins/metabolism , Quantitative Trait Loci , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...