Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Radiat Res ; 198(2): 120-133, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35452510

ABSTRACT

In nuclear and radiological incidents, overexposure to ionizing radiation is life-threatening. It is evident that radiation depletes blood cells and increases circulating cytokine/chemokine concentrations as well as mortality. While microglia cells of female mice have been observed to be less damaged by radiation than in male mice, it is unclear whether sex affects physio-pathological responses in the bone marrow (BM) and gastrointestinal system (GI). We exposed B6D2F1 male and female mice to 0, 1.5, 3, or 6 Gy with mixed-field radiation containing 67% neutron and 33% gamma at a dose rate of 0.6 Gy/min. Blood and tissues were collected on days 1, 4, and 7 postirradiation. Radiation increased cytokines/chemokines in the femurs and ilea of female and male mice in a dose-dependent manner. Cytokines and chemokines reached a peak on day 4 and declined on day 7 with the exception of G-CSF which continued to increase on day 7 in female mice but not in male mice. MiR-34a (a Bcl-2 inhibitor), G-CSF (a miR-34a inhibitor), MAPK activation (pro-cell death), and citrulline (a biomarker of entroepithelial proliferation), active caspase-3 (a biomarker of apoptosis) and caspase-1 activated gasdermin D (a pyroptosis biomarker) were measured in the sternum, femur BM and ileum. Sternum histopathology analysis with H&E staining and femur BM cell counts as well as Flt-3L showed that BM cellularity was not as diminished in females, with males showing a 50% greater decline on day 7 postirradiation, mainly mediated by pyroptosis as indicated by increased gasdermin D in femur BM samples. Ileum injury, such as villus height and crypt depth, was also 43% and 30%, respectively, less damaged in females than in males. The severity of injury in both sexes was consistent with the citrulline and active caspase-3 measurements as well as active caspase-1 and gasdermin D measurements, suggesting apoptosis and pyroptosis occurred. On day 7, G-CSF in the ileum of female mice continued to be elevated by sevenfold, whereas G-CSF in the ileum of male mice returned to baseline. Furthermore, G-CSF is known to inhibit miR-34a expression, which in ileum on day 1 displayed a 3- to 4-fold increase in female mice after mixed-field (67% neutron + 33% gamma) irradiation, as compared to a 5- to 9-fold increase in male mice. Moreover, miR-34a blocked Bcl-2 expression. Mixed-field (60% neutron + 33% gamma) radiation induced more Bcl-2 in females than in males. On day 7, AKT activation was found in the ileums of females and males. However, MAPK activation including ERK, JNK, and p38 showed no changes in the ileum of females (by 0-fold; P > 0.05), whereas the MAPK activation was increased in the ileum of males (by 100-fold; P < 0.05). Taken together, the results suggest that organ injury from mixed-field (67% neutron + 33% gamma) radiation is less severe in females than in males, likely due to increased G-CSF, less MAPK activation, low miR-34a and increased Bcl-2/Bax ratio.


Subject(s)
MicroRNAs , Radiation Injuries , Animals , Apoptosis/radiation effects , Bone Marrow/radiation effects , Caspase 3/metabolism , Chemokines , Citrulline , Cytokines/metabolism , Female , Granulocyte Colony-Stimulating Factor , Ileum/radiation effects , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neutrons , Radiation Injuries/pathology , bcl-2-Associated X Protein/metabolism
2.
Radiat Res ; 196(1): 113-127, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33914884

ABSTRACT

Radiation combined injury (RCI, radiation exposure coupled with other forms of injury, such as burn, wound, hemorrhage, blast, trauma and/or sepsis) comprises approximately 65% of injuries from a nuclear explosion, and greatly increases the risk of morbidity and mortality when compared to that of radiation injury alone. To date, no U.S. Food and Drug Administration (FDA)-approved countermeasures are available for RCI. Currently, three leukocyte growth factors (Neupogen®, Neulasta® and Leukine®) have been approved by the FDA for mitigating the hematopoietic acute radiation syndrome. However these granulocyte-colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) products have failed to increase 30-day survival of mice after RCI, suggesting a more complicated biological mechanism is in play for RCI than for radiation injury. In the current study, the mitigative efficacy of combination therapy using pegylated (PEG)-G-CSF (Neulasta) and -citrulline was evaluated in an RCI mouse model. L-citrulline is a neutral alpha-amino acid shown to improve vascular endothelial function in cardiovascular diseases. Three doses of PEG-G-CSF at 1 mg/kg, subcutaneously administered on days 1, 8 and 15 postirradiation, were supplemented with oral -citrulline (1 g/kg), once daily from day 1 to day 21 postirradiation. The combination treatment significantly improved the 30-day survival of mice after RCI from 15% (vehicle-treated) to 42%, and extended the median survival time by 4 days, as compared to vehicle controls. In addition, the combination therapy significantly increased body weight and bone marrow stem and progenitor cell clonogenicity in RCI mice, and accelerated recovery from RCI-induced intestinal injury, compared to animals treated with vehicle. Treatment with -citrulline alone also accelerated skin wound healing after RCI. In conclusion, these data indicate that the PEG-G-CSF and -citrulline combination therapy is a potentially effective countermeasure for mitigating RCI, likely by enhancing survival of the hematopoietic stem/progenitor cells and accelerating recovery from the RCI-induced intestinal injury and skin wounds.


Subject(s)
Burns/drug therapy , Citrulline/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Polyethylene Glycols/therapeutic use , Radiation Injuries, Experimental/drug therapy , Skin/radiation effects , Animals , Body Weight/radiation effects , Bone Marrow/pathology , Bone Marrow/radiation effects , Burns/etiology , Citrulline/administration & dosage , Citrulline/pharmacology , Disease Models, Animal , Drug Therapy, Combination , Female , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/pharmacology , Mice , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacology , Radiation Injuries, Experimental/complications , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Skin/injuries , Survival Analysis , Weight Loss/radiation effects , Whole-Body Irradiation , Wound Healing/drug effects
3.
Front Pharmacol ; 12: 628018, 2021.
Article in English | MEDLINE | ID: mdl-33603673

ABSTRACT

Exposure to ionizing radiation (radiation injury, RI) in nuclear-related episode is evident to be life-threatening. RI occurs at levels of organs, tissues, cytosols, or nucleus. Their mechanisms are still not fully understood. FDA approves pegylated granulocyte colony-stimulating factor (Neulasta™, Peg-G-CSF) for acute hematopoietic syndrome and has been shown to save lives after lethal RI. We aimed to test whether Ghrelin enhanced Peg-G-CSF's efficacy to save more lives after lethal RI. B6D2F1/J female mice were used for the study. They received 9.5 Gy (LD50/30 at 0.4 Gy/min) emitted from the 60Co-γ-photon radiation facility. Peg-G-CSF was injected subcutaneously at 1 mg/kg once on days 1, 8, and 15 after irradiation. Ghrelin contains 28 amino acid and is a hunger peptide that has been shown to stimulate food intake, promote intestinal epithelial cell proliferation, elevates immunity, inhibits brain hemorrhage, and increases stress-coping. Ghrelin was injected subcutaneously at 113 µg/kg once on days 1, 2, and 3 after irradiation. Survival, body weight, water consumption, hematology, spleen weight, splenocytes, bone marrow cells, and histology of bone marrow and ileum were performed. We observed that radiation resulted in 30-days survival by 30%. RI decreased their body weights and water consumption volumes. On the 30th day post-RI, platelets and WBCs such as basophils, eosinophils, monocytes, lymphocytes, neutrophils and leukocytes were still significantly decreased in surviving mice. Likewise, their RBC, hemoglobin, hematocrit, and splenocytes remained low; splenomegaly was found in these mice. Bone marrow in surviving RI animals maintained low cellularity with high counts of fat cells and low counts of megakaryocytes. Meanwhile, ileum histology displayed injury. However, mice co-treated with both drugs 24 h after RI resulted in 30-days survival by 45% above the vehicle group. Additionally, the body-weight loss was mitigated, the acute radiation syndrome was reduced. This co-therapy significantly increased neutrophils, eosinophils, leukocytes, and platelets in circulation, inhibited splenomegaly, and increased bone marrow cells. Histopathological analysis showed significant improvement on bone marrow cellularity and ileum morphology. In conclusion, the results provide a proof of concept and suggest that the co-therapy of Peg-G-CSF and Ghrelin is efficacious to ameliorate RI.

4.
Cell Biosci ; 10: 63, 2020.
Article in English | MEDLINE | ID: mdl-32426105

ABSTRACT

BACKGROUND: Compared to radiation injury alone (RI), radiation injury combined wound (CI) further enhances acute radiation syndrome and subsequently mortality. We previously reported that therapy with Ghrelin, the 28-amino-acid-peptide secreted from the stomach, significantly increased 30-day survival and mitigated hematopoietic death by enhancing and sustaining granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in the blood and bone marrow; increasing circulating white blood cell depletion; inhibiting splenocytopenia; and accelerating skin-wound healing on day 30 after CI. Herein, we aimed to study the efficacy of Ghrelin on intestinal injury at early time points after CI. METHODS: B6D2F1/J female mice were exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral), followed by 15% total-body-surface-area skin wounds. Several endpoints were measured: at 4-5 h and on days 1, 3, 7, and 15. RESULTS: Ghrelin therapy mitigated CI-induced increases in IL-1ß, IL-6, IL-17A, IL-18, KC, and TNF-α in serum but sustained G-CSF, KC and MIP-1α increases in ileum. Histological analysis of ileum on day 15 showed that Ghrelin treatment mitigated ileum injury by increasing villus height, crypt depth and counts, as well as decreasing villus width and mucosal injury score. Ghrelin therapy increased AKT activation and ERK activation; suppressed JNK activation and caspase-3 activation in ileum; and reduced NF-κB, iNOS, BAX and Bcl-2 in ileum. This therapy recovered the tight junction protein and mitigated bacterial translocation and lipopolysaccharides levels. The results suggest that the capacity of Ghrelin therapy to reduce CI-induced ileum injury is mediated by a balanced NF-κB-AKT-MAPK network that leads to homeostasis of pro-inflammatory and anti-inflammatory cytokines. CONCLUSIONS: Our novel results are the first to suggest that Ghrelin therapy effectively decreases intestinal injury after CI.

5.
Radiat Res ; 190(6): 612-622, 2018 12.
Article in English | MEDLINE | ID: mdl-30311842

ABSTRACT

In this study, we investigated the effects of low-to-moderate doses of radiation in mice, given our limited understanding of the health risks associated with these exposures. Here, we demonstrate the different responses of the CD2F1 mouse hematopoietic system to low-to-moderate (0.5, 1, 3 or 5 Gy) doses of gamma radiation. After 3 and 5 Gy of 60Co total-body irradiation (TBI), mouse blood cell counts were decreased and maintained below baseline up to 28-42 days. In contrast, after 0.5 Gy TBI, lymphocyte and monocyte counts increased, and peaked from day 3 to day 14. Radiation doses at 0.5 and 1 Gy did not cause cell death or T-cell subpopulation changes in spleen and thymus, whereas the clonogenicity of mouse bone marrow (BM) progenitor cells was significantly suppressed on the first day after 0.5-5 Gy TBI, and these low levels were maintained up to 42 days. Although a transient recovery in total colony forming units (CFUs) was shown in mouse BM at days 14 and 21 after 0.5 Gy TBI, the early-stage multipotential progenitor colonies (CFU-GEMM) remained at a significantly low level compared to those of the sham-irradiated (0 Gy) controls. Consistently, the level of stem cell factor (SCF) in BM cells was decreased after low-to-moderate TBI. Serum from individual mice was collected after irradiation and 23 cytokines/chemokines were measured; massive releases of cytokines and chemokines were observed at day 3 postirradiation in a dose-dependent manner. When human hematopoietic CD34+ cells were cultured with the serum collected from mice irradiated at different doses, a significant decrease of CFU-GEMM colonies in the CD34+ cells was observed. Our data suggest that low-to-moderate doses of radiation induced cellular responses that are cell type-dependent. The early stage multipotential progenitor cells in mouse BM were the most sensitive cells even to low-dose irradiation compared to spleen and thymic cells, and 0.5 Gy TBI induced hematopoietic cell injury from day 1 to the end of our experiment, day 42 postirradiation. Radiation-induced decrease of SCF in mouse BM and increase in circulating pro-inflammatory factors may be responsible for the enhanced sensitivity of hematopoietic progenitor cells to radiation.


Subject(s)
Gamma Rays , Hematopoietic Stem Cells/radiation effects , Animals , Antigens, CD34/immunology , Cells, Cultured , Chemokines/metabolism , Cytokines/metabolism , Dose-Response Relationship, Radiation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Stem Cell Factor/metabolism , Whole-Body Irradiation
6.
Cell Biosci ; 8: 27, 2018.
Article in English | MEDLINE | ID: mdl-29632660

ABSTRACT

BACKGROUND: Radiation injury combined wound (CI) enhances acute radiation syndrome and subsequently mortality as compared to radiation injury alone (RI). We previously reported that ghrelin (a 28-amino-acid-peptide secreted from the stomach) treatment significantly increased a 30-day survival, mitigated hematopoietic death, circulating white blood cell (WBC) depletion and splenocytopenia and accelerated skin-wound healing on day 30 after CI. Herein, we aimed to study the ghrelin efficacy at early time points after CI. METHODS: B6D2F1/J female mice were exposed to 60Co-γ-photon radiation at 9.5 Gy (LD50/30) followed by a 15% total-body-surface-area skin wound. Several endpoints were measured at 4-5 h, days 1, 3, 7 and 15. RESULTS: Histological analysis of sternums on day 15 showed that CI induced more adipocytes and less megakaryocytes than RI. Bone marrow cell counts from femurs also indicated CI resulted in lower bone marrow cell counts on days 1, 7 and 15 than RI. Ghrelin treatment mitigated these CI-induced adverse effects. RI and CI decreased WBCs within 4-5 h and continued to decrease to day 15. Ghrelin treatment mitigated decreases in CI mice, mainly from all types of WBCs, but not RBCs, hemoglobin levels and hematocrit values. Ghrelin mitigated the CI-induced thrombocytopenia and splenocytopenia. CI increased granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in blood and bone marrow. Ghrelin therapy was able to enhance and sustain the increases in serum on day 15, probably contributed by spleen and ileum, suggesting the correlation between G-CSF and KC increases and the neutropenia mitigation. Activated caspase-3 levels in bone marrow cells were significantly mitigated by ghrelin therapy on days 3 and 15. CONCLUSIONS: Our novel results are the first to suggest that ghrelin therapy effectively decreases hematopoietic death and splenocytopenia by sustaining circulating G-CSF and KC increases after CI. These results demonstrate efficacy of ghrelin as a radio-mitigator/therapy agent for CI.

7.
Radiat Res ; 189(6): 634-643, 2018 06.
Article in English | MEDLINE | ID: mdl-29652619

ABSTRACT

Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD0/30) of 60Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1ß, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be unaffected by radiation dose rates, can be used instead for assessing the radiation dose. However, in a separate radiation dose and time-course experiment, increases in IL-18 and G-CSF depended on the radiation doses but showed no significant differences between 0.58 and 1.94 Gy/min ( P > 0.05) at 3 and 6 Gy but not 12 Gy. G-CSF continued to increase up to day 7, whereas IL-18 increased on day 4 and remained above baseline level on day 7. Therefore, time after irradiation at different doses should be taken into consideration. To our knowledge, these results are the first to suggest that ionizing radiation, even at a very low-dose-rate (0.04 Gy/min), induces circulating G-CSF increases but not others for selected time points; radiation-induced increases in IL-18 at radiation dose rates between 0.15 and 1.94 Gy/min are also not in a radiation dose-rate-dependent manner. C-CSF, lymphocyte counts and circulating Flt-3 ligand should be explored further as possible biomarkers of radiation exposure at early time points. IL-18 is also worthy of further study as a potential biomarker at later time points.


Subject(s)
Chemokines/blood , Granulocyte Colony-Stimulating Factor/blood , Interleukin-18/blood , Animals , Dose-Response Relationship, Radiation , Female , Gamma Rays/adverse effects , Macrophage Colony-Stimulating Factor/blood , Mice
8.
PLoS One ; 12(9): e0184393, 2017.
Article in English | MEDLINE | ID: mdl-28934227

ABSTRACT

Hemorrhage following whole-body γ-irradiation in a combined injury (CI) model increases mortality compared to whole-body γ-irradiation alone (RI). The decreased survival in CI is accompanied by increased bone marrow injury, decreased hematocrit, and alterations of miRNA in the kidney. In this study, our aim was to examine cytokine homeostasis, susceptibility to systemic bacterial infection, and intestinal injury. More specifically, we evaluated the interleukin-6 (IL-6)-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), Flt-3 ligand, and corticosterone. CD2F1 male mice received 8.75 Gy 60Co gamma photons (0.6 Gy/min, bilateral) which was followed by a hemorrhage of 20% of the blood volume. In serum, RI caused an increase of IL-1, IL-2, IL-3, IL-5, IL-6, IL-12, IL-13, IL-15, IL-17A, IL-18, G-CSF, CM-CSF, eotaxin, IFN-γ, MCP-1, MIP, RANTES, and TNF-α, which were all increased by hemorrhage alone, except IL-9, IL-17A, and MCP-1. Nevertheless, CI further elevated RI-induced increases of these cytokines except for G-CSF, IFN- γ and RANTES in serum. In the ileum, hemorrhage in the CI model significantly enhanced RI-induced IL-1ß, IL-3, IL-6, IL-10, IL-12p70, IL-13, IL-18, and TNF-α concentrations. In addition, Proteus mirabilis Gram(-) was found in only 1 of 6 surviving RI mice on Day 15, whereas Streptococcus sanguinis Gram(+) and Sphingomonas paucimobilis Gram(-) were detected in 2 of 3 surviving CI mice (with 3 CI mice diseased due to inflammation and infection before day 15) at the same time point. Hemorrhage in the CI model enhanced the RI-induced increases in C3 and decreases in CRP concentrations. However, hemorrhage alone did not alter the basal levels, but hemorrhage in the CI model displayed similar increases in Flt-3 ligand levels as RI did. Hemorrhage alone altered the basal levels of corticosterone early after injury, which then returned to the baseline, but in RI mice and CI mice the increased corticosterone concentration remained elevated throughout the 15 day study. CI increased 8 miRNAs and decreased 10 miRNAs in serum, and increased 16 miRNA and decreased 6 miRNAs in ileum tissue. Among the altered miRNAs, CI increased miR-34 in the serum and ileum which targeted an increased phosphorylation of ERK, p38, and increased NF-κB, thereby leading to increased iNOS expression and activation of caspase-3 in the ileum. Further, let-7g/miR-98 targeted the increased phosphorylation of STAT3 in the ileum, which is known to bind to the iNOS gene. These changes may correlate with cell death in the ileum of CI mice. The histopathology displayed blunted villi and villus edema in RI and CI mice. Based on the in silico analysis, miR-15, miR-99, and miR-100 were predicted to regulate IL-6 and TNF. These results suggest that CI-induced alterations of cytokines/chemokines, CRP, and C3 cause a homeostatic imbalance and may contribute to the pathophysiology of the gastrointestinal injury. Inhibitory intervention in these responses may prove therapeutic for CI and improve recovery of the ileal morphologic damage.


Subject(s)
Caspase 3/metabolism , Complement C3/metabolism , Cytokines/metabolism , Hemorrhage/metabolism , MicroRNAs/metabolism , Whole-Body Irradiation/adverse effects , Animals , Apoptosis/physiology , Apoptosis/radiation effects , Bacterial Infections/etiology , Bacterial Infections/metabolism , Bacterial Infections/mortality , Bacterial Infections/pathology , C-Reactive Protein/metabolism , Cobalt Radioisotopes/adverse effects , Corticosterone/metabolism , Hemorrhage/complications , Hemorrhage/mortality , Hemorrhage/pathology , Ileum/metabolism , Ileum/microbiology , Ileum/pathology , Ileum/radiation effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Male , Mice , Radiation Injuries, Experimental/complications , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/mortality , Radiation Injuries, Experimental/pathology , Random Allocation , fms-Like Tyrosine Kinase 3/metabolism
9.
Radiat Res ; 188(5): 476-490, 2017 11.
Article in English | MEDLINE | ID: mdl-28850300

ABSTRACT

Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation alone and combined injury) when treated with pegylated G-CSF and Alxn4100TPO. Treatment with pegylated G-CSF alone increased survival after irradiation alone and combined injury by 33% and 15%, respectively, and further delayed wound healing, but increased WBC, RBC and platelet counts after irradiation alone, and only RBCs and platelets after combined injury. Treatment with Alxn4100TPO alone increased survival after both irradiation alone and combined injury by 4 and 23%, respectively, and delayed wound healing after combined injury, but increased RBCs, hemoglobin concentrations, hematocrit values and platelets after irradiation alone and only platelets after combined injury. Taken together, the results suggest that combined treatment with pegylated G-CSF and Alxn4100TPO is effective for mitigating effects of both radiation alone and in combination with injury.


Subject(s)
Acute Radiation Syndrome/drug therapy , Antibodies, Monoclonal/pharmacology , Granulocyte Colony-Stimulating Factor/chemistry , Granulocyte Colony-Stimulating Factor/pharmacology , Polyethylene Glycols/chemistry , Thrombopoietin/pharmacology , Whole-Body Irradiation/adverse effects , Wound Healing/drug effects , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/pathology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Blood Cell Count , Body Weight/drug effects , Body Weight/radiation effects , Bone Marrow/drug effects , Bone Marrow/radiation effects , Drug Interactions , Female , Granulocyte Colony-Stimulating Factor/therapeutic use , Ileum/drug effects , Ileum/pathology , Ileum/radiation effects , Mice , Survival Analysis , Thrombopoietin/therapeutic use , Wound Healing/radiation effects
10.
PLoS One ; 11(8): e0160575, 2016.
Article in English | MEDLINE | ID: mdl-27500529

ABSTRACT

The radioprotective capacity of a rationally-designed Mn2+-decapeptide complex (MDP), based on Mn antioxidants in the bacterium Deinococcus radiodurans, was investigated in a mouse model of radiation injury. MDP was previously reported to be extraordinarily radioprotective of proteins in the setting of vaccine development. The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR). We show that the peptides accumulated in Jurkat T-cells and protected them from 100 Gy. MDP preserved the activity of T4 DNA ligase exposed to 60,000 Gy. In vivo, MDP was nontoxic and protected B6D2F1/J (female) mice from acute radiation syndrome. All irradiated mice treated with MDP survived exposure to 9.5 Gy (LD70/30) in comparison to the untreated mice, which displayed 63% lethality after 30 days. Our results show that MDP provides early protection of white blood cells, and attenuates IR-induced damage to bone marrow and hematopoietic stem cells via G-CSF and GM-CSF modulation. Moreover, MDP mediated the immunomodulation of several cytokine concentrations in serum including G-CSF, GM-CSF, IL-3 and IL-10 during early recovery. Our results present the necessary prelude for future efforts towards clinical application of MDP as a promising IR countermeasure. Further investigation of MDP as a pre-exposure prophylactic and post-exposure therapeutic in radiotherapy and radiation emergencies is warranted.


Subject(s)
Deinococcus/chemistry , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/pharmacology , Animals , Antigens, CD34/metabolism , Antioxidants/chemistry , Bone Marrow/drug effects , Bone Marrow/radiation effects , Cytokines/blood , DNA Ligases/metabolism , Drug Design , Female , Humans , Jurkat Cells/drug effects , Jurkat Cells/radiation effects , Leukopenia/drug therapy , Manganese/chemistry , Mice, Inbred Strains , Peptides/chemistry , Radiation Injuries/prevention & control , Radiation, Ionizing , Radiation-Protective Agents/adverse effects , Splenomegaly/drug therapy
11.
PLoS One ; 10(9): e0139271, 2015.
Article in English | MEDLINE | ID: mdl-26422254

ABSTRACT

Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1ß, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.


Subject(s)
Bone Marrow Cells/cytology , Disease-Free Survival , Hematopoiesis/radiation effects , Hemorrhage/complications , MicroRNAs/metabolism , Radiation Injuries/complications , Anemia/etiology , Anemia/metabolism , Animals , Body Weight , Bone Marrow Cells/metabolism , Bone Marrow Cells/radiation effects , Caspase 3/metabolism , Cytokines/metabolism , Erythropoietin/metabolism , Hemorrhage/mortality , Hemorrhage/pathology , Inflammation/metabolism , Kidney/blood supply , Kidney/metabolism , Kidney/pathology , Kidney/radiation effects , Lethal Dose 50 , Leukopenia/etiology , Male , Mice , NF-kappa B/metabolism , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , Water/metabolism
12.
Bone ; 81: 487-494, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26335157

ABSTRACT

The present study investigated the detrimental effects of non-lethal, high-dose (whole body) γ-irradiation on bone, and the impact that radiation combined with skin trauma (i.e. combined injury) has on long-term skeletal tissue health. Recovery of bone after an acute dose of radiation (RI; 8 Gy), skin wounding (15-20% of total body skin surface), or combined injury (RI+Wound; CI) was determined 3, 7, 30, and 120 days post-irradiation in female B6D2F1 mice and compared to non-irradiated mice (SHAM) at each time-point. CI mice demonstrated long-term (day 120) elevations in serum TRAP 5b (osteoclast number) and sclerostin (bone formation inhibitor), and suppression of osteocalcin levels through 30 days as compared to SHAM (p<0.05). Radiation-induced reductions in distal femur trabecular bone volume fraction and trabecular number through 120 days post-exposure were significantly greater than non-irradiated mice (p<0.05) and were exacerbated in CI mice by day 30 (p<0.05). Negative alterations in trabecular bone microarchitecture were coupled with extended reductions in cancellous bone formation rate in both RI and CI mice as compared to Sham (p<0.05). Increased osteoclast surface in CI animals was observed for 3 days after irradiation and remained elevated through 120 days (p<0.01). These results demonstrate a long-term, exacerbated response of bone to radiation when coupled with non-lethal wound trauma. Changes in cancellous bone after combined trauma were derived from extended reductions in osteoblast-driven bone formation and increases in osteoclast activity.


Subject(s)
Bone and Bones/radiation effects , Femur/radiation effects , Osteoblasts/radiation effects , Skin/pathology , Skin/radiation effects , Wound Healing , Adaptor Proteins, Signal Transducing , Animals , Biomarkers/blood , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Female , Femur/diagnostic imaging , Femur/pathology , Glycoproteins/blood , Intercellular Signaling Peptides and Proteins , Mice , Osteoblasts/diagnostic imaging , Osteoclasts/cytology , Osteogenesis , Radiation Exposure , Skin/diagnostic imaging , Stress, Mechanical , X-Ray Microtomography
13.
Radiat Res ; 183(6): 684-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26010714

ABSTRACT

Ionizing radiation exposure combined with wound injury increases animal mortalities than ionizing radiation exposure alone. Ciprofloxacin (CIP) is in the fluroquinolone family of synthetic antibiotic that are available from the strategic national stockpile for emergency use and is known to inhibit bacterial sepsis. The purpose of this study was to evaluate the efficacy of ciprofloxacin as a countermeasure to combined injury mortality and determine the signaling proteins involved in energy machinery. B6D2F1/J female mice were randomly assigned to receive either 9.75 Gy irradiation with Co-60 gamma rays followed by skin wounding (combined injury; CI) or sham procedure (sham). Either ciprofloxacin (90 mg/kg/day) or vehicle (VEH) (water) was administered orally to these mice 2 h after wounding and thereafter daily for 10 days. Determination of tissue adenosine triphosphate (ATP) was conducted, and immunoblotting for signaling proteins involved in ATP machinery was performed. Combined injury resulted in 60% survival after 10 days compared to 100% survival in the sham group. Furthermore, combined injury caused significant reductions of ATP concentrations in ileum, pancreas, brain, spleen, kidney and lung (-25% to -95%) compared to the sham group. Ciprofloxacin administration after combined injury resulted in 100% survival and inhibited reductions in ileum and kidney ATP production. Ileum protein levels of heat-shock protein 70 kDa (HSP-70, a chaperone protein involved in ATP synthesis) and pyruvate dehydrogenase (PDH, an enzyme complex crucial to conversion of pyruvate to acetyl CoA for entrance into TCA cycle) were significantly lower in the CI group (vs. sham group). Using immunoprecipitation and immunoblotting, HSP-70-PDH complex was found to be present in the ileum tissue of CI mice treated with ciprofloxacin. Furthermore, phosphorylation of serine residues of PDH resulting in inactivating PDH enzymatic activity, which occurred after combined injury, was inhibited with ciprofloxacin treatment, thus enabling PDH to increase ATP production. Increased ileum levels of pyruvate dehydrogenase kinase 1 protein (PDK1, an enzyme responsible for PDH phosphorylation) after combined injury were also prevented by ciprofloxacin treatment. Taken together, these data suggest that ciprofloxacin oral administration after combined injury had a role in sustained ileum ATP levels, and may have acted through preservation of PDH by HSP-70 and inhibition of PDK1. These molecular changes in the ileum are simply one of a host of mechanisms working in concert with one another by which ciprofloxacin treatment mitigates body weight loss and drastically enhances subsequent survival after combined injury. To this end, our findings indicate that oral treatment of ciprofloxacin is a valuable therapeutic treatment after irradiation with combined injury and warrants further analyses to elucidate the precise mechanisms involved.


Subject(s)
Adenosine Triphosphate/metabolism , Ciprofloxacin/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyruvate Dehydrogenase Complex/metabolism , Radiation Injuries, Experimental/complications , Radiation Injuries, Experimental/drug therapy , Wounds and Injuries/complications , Administration, Oral , Animals , Ciprofloxacin/administration & dosage , Ciprofloxacin/therapeutic use , Female , Gamma Rays/adverse effects , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Ileum/drug effects , Ileum/metabolism , Ileum/radiation effects , Mice , Phosphorylation/drug effects , Phosphorylation/radiation effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Radiation Injuries, Experimental/enzymology , Radiation Injuries, Experimental/metabolism , Serine/metabolism
14.
Radiat Res ; 183(5): 578-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25897554

ABSTRACT

Exposure to high-dose radiation results in deleterious effects on skeletal tissue. However, the effects of combined trauma such as radiation and hemorrhage on skeletal properties have yet to be elucidated. The purpose of this study was to evaluate the effects of radiation injury combined with hemorrhage on trabecular bone properties and biomarkers of bone metabolism, and to determine whether hemorrhage enhances radiation-associated bone loss. Male CD2F1 mice (10 weeks old) were exposed to one single dose of gamma radiation ((60)Co): 0 or 7.25 Gy. Two hours after irradiation, animals were bled 0% (n = 8) or 20% (n = 8) of total blood volume via the submandibular vein. Mice were euthanized 30 days after irradiation, and distal femora were analyzed using standard histomorphometry to determine changes in trabecular bone volume (BV/TV), thickness (Tb.Th), spacing (Tb.Sp), number (Tb.N) and marrow adipocyte density. Femurs from mice euthanized 1, 7 and 15 days post injury were flushed and total bone marrow cells were counted. Radiation exposure resulted in deleterious effects on distal femur BV/TV (-63%), Tb.Th (-34%), Tb.N (-45%), Tb.Sp (+125%) and adipocyte density (+286%) compared with the sham-irradiated mice (0 Gy; P < 0.05). Hemorrhage after irradiation resulted in greater deleterious effects on the distal femur with BV/TV (-13%), Tb.Th (-44%), Tb.N (-26%), Tb.Sp (+29%) and marrow adipocyte density (+33%) compared with radiation exposure only (P < 0.05). Analysis of the biomarkers of bone metabolism in serum from irradiated and hemorrhaged mice revealed significantly lower levels of osteocalcin (-60%) and procollagen type 1 amino-terminal propeptide (-36%; P1NP, biomarkers of bone formation activity), as well as elevations in sclerostin (+56%; SOST, an inhibitor of bone formation) compared with serum from irradiated only mice (P < 0.05). Additionally, the onset of bone marrow cell depletion in irradiated and hemorrhaged mice occurred earlier and to a greater extent compared to that in irradiated only mice. This study provides definitive, preliminary evidence that hemorrhage further exacerbates trabecular bone loss associated with nonlethal high-dose gamma radiation.


Subject(s)
Bone Marrow Cells/radiation effects , Hemorrhage/complications , Osteoporosis/etiology , Animals , Bone Marrow Cells/pathology , Male , Mice , Radiation Injuries, Experimental/pathology , Radiation, Ionizing
15.
Mol Cell Biochem ; 393(1-2): 133-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24802382

ABSTRACT

Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 (-/-) of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2-8 Gy (60)Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53(+/+)) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.


Subject(s)
Ciprofloxacin/administration & dosage , Histones/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Radiation-Sensitizing Agents/administration & dosage , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage/drug effects , DNA Damage/radiation effects , Gamma Rays , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/radiation effects , Phosphorylation , Radiation-Protective Agents/administration & dosage
16.
Cell Biosci ; 1(1): 21, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21711488

ABSTRACT

BACKGROUND: Hemorrhage increases inducible nitric oxide synthase (iNOS) and depletes ATP levels in various tissues. Previous studies have shown that geldanamycin, an inducer of heat shock protein 70kDa (HSP-70) and inhibitor of iNOS, limits both processes. Reduction in NO production limits lipid peroxidation, apoptosome formation, and caspase-3 activation, thereby increasing cellular survival and reducing the sequelae of hemorrhage. The poor solubility of geldanamycin in aqueous solutions, however, limits its effectiveness as a drug. 17-DMAG is a water-soluble analog of geldanamycin that might have greater therapeutic utility. This study investigated the effectiveness of 17-DMAG at reducing hemorrhagic injury in mouse small intestine. RESULTS: In mice, the hemorrhage-induced iNOS increase correlated with increases in Kruppel-like factor 6 (KLF6) and NF-kB and a decrease in KLF4. As a result, increases in NO production and lipid peroxidation occurred. Moreover, hemorrhage also resulted in decreased Bcl-2 and increased TNF-α, IL-6, and IL-10 concentrations, p53 protein, caspase-3 activation, and cellular ATP depletion. A shortening and widening of villi in the small intestine was also observed. Treatment with 17-DMAG significantly reduced the hemorrhage-induced increases in iNOS protein, jejunal alteration, and TNF-α and IL-10 concentrations, but 17-DMAG did not affect the hemorrhage-induced increases in p53 and IL-6 concentration. 17-DMAG treatment by itself upregulated HSP-70, Bcl-2, and p53. CONCLUSION: Since 17-DMAG is water soluble, bioactive, and not toxic, 17-DMAG may prove useful as a prophylactic drug for hemorrhage.

17.
Radiat Res ; 172(3): 321-30, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19708781

ABSTRACT

Inducible nitric oxide synthase (iNOS) expression and NO production increase after radiation exposure. We showed previously that inhibiting iNOS expression prevents hemorrhage injury; we therefore investigated whether inhibiting iNOS expression also limits radiation injury. Human Jurkat T cells were exposed to gamma radiation (2, 4, 6 or 8 Gy), and cell lysates were collected for analysis at selected times afterward. Radiation exposure increased iNOS expression within 4 h postirradiation by increasing the levels of the iNOS transcription factors NF-kappaB and KLF6. By 24 h postirradiation cell viability was reduced. In these cells, NO production, lipid peroxidation, protein nitration, apoptosomes (formed by cytochrome c, caspase 9 and Apaf-1), and caspase 3 activity were significantly elevated, suggesting that the iNOS pathway had been activated. Treatment with the iNOS inhibitors 17-DMAG or L-NIL-6 24 h prior to irradiation limited these changes, as did treatment with iNOS siRNA to silence the iNOS gene. These results suggest radiation injury involves the iNOS pathway, and iNOS-mediated NO produced endogenously in the T cell alters overall T-cell function and results in apoptosis and cell lethality. Control of iNOS expression may represent a useful approach for protecting T cells from radiation injury.


Subject(s)
Benzoquinones/administration & dosage , Caspases/metabolism , Lactams, Macrocyclic/administration & dosage , Nitric Oxide Synthase Type II/metabolism , Radiation Tolerance/physiology , T-Lymphocytes/enzymology , T-Lymphocytes/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Gamma Rays , Humans , Jurkat Cells , Radiation Dosage , Radiation Tolerance/drug effects , Radiation-Protective Agents/administration & dosage , T-Lymphocytes/drug effects
18.
J Nutr Elder ; 24(2): 5-18, 2004.
Article in English | MEDLINE | ID: mdl-15778154

ABSTRACT

The purpose of this study was to develop a survey tool for assessing the satisfaction of elderly long-term care (LTC) residents with the meals and food services they receive, as well as to assess quality of life issues related to eating. Food service delivery should be provided in an environment that fosters autonomy, interpersonal relations, and security. The questionnaire was administered as face-to-face interviews with 205 residents (> or = 65 years of age) of 13 LTC facilities in Saskatoon, Saskatchewan, Canada (participation rate = 67%). Residents expressed some concern with food variety, quality, taste, and appearance, and with the posting of menus. Quality of life issues were mostly positive; however, residents were less satisfied with areas related to their autonomy such as food choice and snack availability.


Subject(s)
Food Services/standards , Homes for the Aged , Patient Satisfaction , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Personal Autonomy , Quality of Life , Reproducibility of Results , Saskatchewan , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...