Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 96(1): 121-132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709569

ABSTRACT

OBJECTIVE: Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS: Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS: A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.


Subject(s)
Illusions , Magnetic Resonance Imaging , Humans , Male , Female , Illusions/physiology , Middle Aged , Aged , Adult , Thalamus/surgery , Thalamus/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Ventral Thalamic Nuclei/diagnostic imaging , Aged, 80 and over
2.
Front Neurol ; 15: 1345873, 2024.
Article in English | MEDLINE | ID: mdl-38595847

ABSTRACT

Background: The ventral intermediate nucleus (VIM) is the premiere target in magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for tremor; however, there is no consensus on the optimal coordinates for ablation. This study aims to ascertain the various international VIM targeting approaches (VIM-TA) and any evolution in practice. Methods: International MRgFUS centers were invited to share VIM-TAs in 2019 and 2021. Analyses of any modification in practice and of anatomical markers and/or tractography in use were carried out. Each VIM-TA was mapped in relation to the mid-commissural point onto a 3D thalamic nucleus model created from the Schaltenbrand-Wahren atlas. Results: Of the 39 centers invited, 30 participated across the study period, providing VIM-TAs from 26 centers in 2019 and 23 in 2021. The results are reported as percentages of the number of participating centers in that year. In 2019 and 2021, respectively, 96.2% (n = 25) and 95.7% (n = 22) of centers based their targeting on anatomical landmarks rather than tractography. Increased adoption of tractography in clinical practice and/or for research was noted, changing from 34.6% to 78.3%. There was a statistically significant change in VIM-TAs in the superior-inferior plane across the study period; the percentage of VIM-TAs positioned 2 mm above the intercommissural line (ICL) increased from 16.0% in 2019 to 40.9% in 2021 (WRST, p < 0.05). This position is mapped at the center of VIM on the 3D thalamic model created based on the Schaltenbrand-Wahren atlas. In contrast, the VIM-TA medial-lateral and anterior-posterior positions remained stable. In 2022, 63.3% of participating centers provided the rationale for their VIM-TAs and key demographics. The centers were more likely to target 2 mm above the ICL if they had increased experience (more than 100 treatments) and/or if they were North American. Conclusion: Across the study period, FUS centers have evolved their VIM targeting superiorly to target the center of the VIM (2 mm above the ICL) and increased the adoption of tractography to aid VIM localization. This phenomenon is observed across autonomous international centers, suggesting that it is a more optimal site for FUS thalamotomy in tremors.

3.
Magn Reson Med ; 87(3): 1446-1460, 2022 03.
Article in English | MEDLINE | ID: mdl-34752644

ABSTRACT

PURPOSE: Before MR fingerprinting (MRF) can be adopted clinically, the derived quantitative values must be proven accurate and repeatable over a range of T1 and T2 values and temperatures. Correct assessment of accuracy and precision as well as comparison between measurements can only be performed when temperature is either controlled or corrected for. The purpose of this study was to investigate the temperature dependence of T1 and T2 MRF values and evaluate the accuracy and repeatability of temperature-corrected relaxation values derived from a B1 -corrected MRF-fast imaging with steady-state precession implementation using 2 different dictionary sizes. METHODS: The International Society of MR in Medicine/National Institute of Standards and Technology phantom was scanned using an MRF sequence of 2 different lengths, a variable flip angle T1 , and a multi-echo spin echo T2 at 14 temperatures ranging from 15°C to 28°C and investigated with a linear regression model. Temperature-corrected accuracy was evaluated by correlating T1 and T2 times from each MRF dictionary with reference values. Repeatability was assessed using the coefficient of variation, with measurements taken over 30 separate sessions. RESULTS: There was a statistically significant fit of the model for MRF-derived T1 and T2 and temperature (p < 0.05) for all the spheres with a T1 > 500 ms. Both MRF methods showed a strong linear correlation with reference values for T1 (R2 = 0.996) and T2 (R2 = 0.982). MRF repeatability for T1 values was ≤1.4% and for T2 values was ≤3.4%. CONCLUSION: MRF demonstrated relaxation times with a temperature dependence similar to that of conventional mapping methods. Temperature-corrected T1 and T2 values from both dictionaries showed adequate accuracy and excellent repeatability in this phantom study.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Phantoms, Imaging , Reference Values , Reproducibility of Results , Temperature
4.
Pediatr Res ; 86(3): 355-359, 2019 09.
Article in English | MEDLINE | ID: mdl-30965354

ABSTRACT

BACKGROUND: Developmental abnormalities of the corpus callosum (CC) are linked to multiple neuro-developmental disorders, for which neonatal neuroimaging may allow earlier diagnosis and intervention. MRI is often considered the most sensitive imaging modality to white matter changes, while neurosonogram (NS) remains the clinical staple. This study assesses the correlation between MRI and US measurements of the neonatal CC using a protocol derived from established methodologies. METHODS: MR and NS images from an existing cohort of term infants (≥37 weeks gestational age) were studied. Length and area measurements of the CC made with linear (LUS) and phased array US (PUS) data were compared to those from MRI. Intra-observer reliabilities were estimated. RESULTS: Moderate-to-strong correlation strengths were observed for length measurements and the total area of the CC. Sectional area measurements showed poorer correlations. Bland-Altman plots support improved correspondence of length and total area measurements. LUS data appeared to correspond closer to MRI. All three modalities showed comparable repeatability. CONCLUSION: NS correlates well with some MRI measurements of the CC and shows similar levels of repeatability, making them possibly interchangeable. Use of LUS, a technique rarely used for NS, may be preferable to the standard approach for morphological studies.


Subject(s)
Corpus Callosum/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Ultrasonography , Algorithms , Body Temperature , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Intensive Care Units, Neonatal , Linear Models , Male , Observer Variation , Reproducibility of Results , Retrospective Studies , Tertiary Care Centers
5.
Med Phys ; 45(1): 287-296, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29095484

ABSTRACT

PURPOSE: To propose a method to quantify T1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. METHODS: A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B0 field inhomogeneity was assessed in test objects and healthy volunteers. The T1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). RESULTS: The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T1 measurements were affected by B0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T1 measurements of breast parenchyma in volunteers. The values of T1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T1 values, potentially related to their infiltrative growth pattern. CONCLUSIONS: This work has demonstrated the feasibility of fat-suppressed T1 measurements as a tool for clinical studies. The proposed quantitative approach is practical, enabled the detection of differences between lobular and invasive ductal carcinomas, and further enables the optimization of DCE protocols by tailoring the dynamic range of the sequence to the values of T1 measured.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Lobular/diagnostic imaging , Contrast Media , Magnetic Resonance Imaging/methods , Adipose Tissue/diagnostic imaging , Diagnosis, Differential , Feasibility Studies , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/instrumentation , Parenchymal Tissue/diagnostic imaging , Phantoms, Imaging , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...