Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33600377

ABSTRACT

The splenic microenvironment regulates hematopoietic stem and progenitor cell (HSPC) function, particularly during demand-adapted hematopoiesis; however, practical strategies to enhance splenic support of transplanted HSPCs have proved elusive. We have previously demonstrated that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using the small molecule (+)SW033291 (PGDHi), increases BM prostaglandin E2 (PGE2) levels, expands HSPC numbers, and accelerates hematologic reconstitution after BM transplantation (BMT) in mice. Here we demonstrate that the splenic microenvironment, specifically 15-PGDH high-expressing macrophages, megakaryocytes (MKs), and mast cells (MCs), regulates steady-state hematopoiesis and potentiates recovery after BMT. Notably, PGDHi-induced neutrophil, platelet, and HSPC recovery were highly attenuated in splenectomized mice. PGDHi induced nonpathologic splenic extramedullary hematopoiesis at steady state, and pretransplant PGDHi enhanced the homing of transplanted cells to the spleen. 15-PGDH enzymatic activity localized specifically to macrophages, MK lineage cells, and MCs, identifying these cell types as likely coordinating the impact of PGDHi on splenic HSPCs. These findings suggest that 15-PGDH expression marks HSC niche cell types that regulate hematopoietic regeneration. Therefore, PGDHi provides a well-tolerated strategy to therapeutically target multiple HSC niches, promote hematopoietic regeneration, and improve clinical outcomes of BMT.


Subject(s)
Bone Marrow Cells/drug effects , Enzyme Inhibitors/pharmacology , Hematopoiesis, Extramedullary/drug effects , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Regeneration , Spleen/drug effects , Animals , Bone Marrow Cells/cytology , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Spleen/enzymology , Spleen/metabolism
2.
JCI Insight ; 52019 04 18.
Article in English | MEDLINE | ID: mdl-30998506

ABSTRACT

The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function, though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mφs) directs HSC platelet-bias. Mφs from the marrow of aged mice and humans exhibited an activated phenotype, with increased expression of inflammatory signals. Aged marrow Mφs also displayed decreased phagocytic function. Senescent neutrophils, typically cleared by marrow Mφs, were markedly increased in aged mice, consistent with functional defects in Mφ phagocytosis and efferocytosis. In aged mice, Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity, which can process pro-IL1B, was increased in marrow Mφs and neutrophils. Mechanistically, IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice, depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mφs induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mφs and IL1B in the age-associated lineage-skewing of HSCs, and reveals the therapeutic potential of their manipulation as antigeronic targets.


Subject(s)
Aging/physiology , Blood Platelets/metabolism , Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Animals , Bone Marrow/pathology , Caspase 1/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Phagocytosis , Phenotype , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL