Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 15(7): 2770-2784, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29734810

ABSTRACT

Neovascular age-related macular degeneration (wet AMD) results from the pathological angiogenesis of choroidal capillaries, which leak fluid within or below the macular region of the retina. The current standard of care for treating wet AMD utilizes intravitreal injections of anti-VEGF antibodies or antibody fragments to suppress ocular vascular endothelial growth factor (VEGF) levels. While VEGF suppression has been demonstrated in wet AMD patients by serial measurements of free-VEGF concentrations in aqueous humor samples, it is presumed that anti-VEGF molecules also permeate across the inner limiting membrane (ILM) of the retina as well as the retinal pigmented epithelium (RPE) and suppress VEGF levels in the retina and/or choroidal regions. The latter effects are inferred from serial optical coherence tomography (OCT) measurements of fluid in the retinal and sub-retinal spaces. In order to gain theoretical insights to the dynamics of retinal levels of free-VEGF following intravitreal injection of anti-VEGF molecules, we have extended our previous two-compartment pharmacokinetic/pharmacodynamic (PK/PD) model of ranibizumab-VEGF suppression in vitreous and aqueous humors to a three-compartment model that includes the retinal compartment. In the new model, reference values for the macromolecular permeability coefficients between retina and vitreous ( pILM) and between retina and choroid ( pRPE) were estimated from PK data obtained in rabbit. With these values, the three-compartment model was used to re-analyze the aqueous humor levels of free-VEGF obtained in wet AMD patients treated with ranibizumab and to compare them to the simulated retinal levels of free-VEGF, including the observed variability in PK and PD. We have also used the model to explore the impact of varying pILM and pRPE to assess the case in which an anti-VEGF molecule is impermeable to the ILM and to assess the potential effects of AMD pathology on the RPE barrier. Our simulations show that, for the reference values of pILM and pRPE, the simulated duration of VEGF suppression in the retina is approximately 50% shorter than the observed duration of VEGF suppression in the aqueous humor, a finding that may explain the short duration of suppressed disease activity in the "high anti-VEGF demand" patients reported by Fauser and Muether ( Br. J. Ophthalmol. 2016, 100, 1494-1498 ). At 10-fold lower values of pRPE, the durations of VEGF suppression in the retina and aqueous humor are comparable. Lastly we have used the model to explore the impact of dose and binding parameters on the duration and depth of VEGF suppression in the aqueous and retinal compartments. Our simulations with the three-compartment PK/PD model provide new insights into inter-patient variability in response to anti-VEGF therapy and offer a mechanistic framework for developing treatment regimens and molecules that may prolong the duration of retinal VEGF suppression.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Ranibizumab/pharmacology , Retina/pathology , Vascular Endothelial Growth Factor A/metabolism , Wet Macular Degeneration/drug therapy , Angiogenesis Inhibitors/therapeutic use , Aqueous Humor/drug effects , Aqueous Humor/metabolism , Humans , Intravitreal Injections , Models, Biological , Ranibizumab/therapeutic use , Retina/drug effects , Retinal Vessels/drug effects , Retinal Vessels/pathology , Vitreous Body/drug effects , Vitreous Body/metabolism , Wet Macular Degeneration/pathology
2.
Mol Pharm ; 14(8): 2690-2696, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28631484

ABSTRACT

Intravitreally (IVT) injected macromolecules for the treatment of age-related macular degeneration must permeate through the inner limiting membrane (ILM) into the retina and through the retinal pigment epithelium (RPE) to enter the choroid. A quantitative understanding of intraocular transport mechanisms, elimination pathways, and the effect of molecular size is currently incomplete. We present a semimechanistic, 3-compartment (retina, vitreous, and aqueous) pharmacokinetic (PK) model, expressed using linear ordinary differential equations (ODEs), to describe the molecular concentrations following a single IVT injection. The model was fit to experimental rabbit data, with Fab, Fc, IgG, and IgG null antibodies and antibody fragments, to estimate key ocular pharmacokinetic parameters. The model predicts an ocular half-life, t1/2, which is the same for all compartments and dependent on the hydrodynamic radius (Rh) of the respective molecules, consistent with observations from the experimental data. Estimates of the permeabilities of the RPE and ILM are derived for Rh values ranging from 2.5 to 4.9 nm, and are found to be in good agreement with ex-vivo measurements from bovine eyes. We show that the ratio of these permeabilities largely determines the ratio of the molecular concentrations in the retina and vitreal compartments and their dependence on Rh. The model further provides estimates for the ratio of fluxes corresponding to the elimination pathways from the eye, i.e., aqueous humor to retina/choroid, which increase from 5:1 to 7:1 as Rh decreases. Our semimechanistic model provides a quantitative framework for interpreting ocular PK and the effects of molecule size on rate-determining parameters. We have shown that intraocular permeabilities can be reasonably estimated from 3-compartment ocular PK data and can determine how these parameters influence the half-life, retinal permeation, and elimination of intravitreally injected molecules from the eye.


Subject(s)
Antibodies/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Antibodies/administration & dosage , Choroid/metabolism , Immunoglobulin G/metabolism , Intravitreal Injections , Models, Theoretical , Rabbits , Vitreous Body/metabolism
3.
Mol Pharm ; 13(9): 2941-50, 2016 09 06.
Article in English | MEDLINE | ID: mdl-26726925

ABSTRACT

Intravitreal injection of anti-VEGF (vascular endothelial growth factor) antibodies or antibody fragments has been shown to be a highly effective treatment for neovascular age-related macular degeneration (wet AMD). The ocular half-life (t1/2) of these large molecules, determined in ocular fluids or derived from serum levels, varies with molecular size and is larger in humans than in preclinical animal species. The high affinity binding of VEGF to these molecules lowers the free concentration of VEGF and reduces its occupancy on VEGF receptors in ocular tissues. To understand the biophysical determinants of t1/2 for anti-VEGF antibodies and the time-course of VEGF in ocular fluids, we developed a mechanistic model of intravitreal pharmacokinetics (IVT PK) for anti-VEGF antibodies and combined it with a mechanistic model of the pharmacodynamics (RVR PD) of VEGF suppression by ranibizumab, an anti-VEGF recombinant, humanized monoclonal antibody fragment (Fab). Our IVT PK model predicts that the ocular t1/2 of a large molecule will be approximately four-times the calculated value of its vitreous diffusion time (Tdiff), defined as rvit(2)/6D, where rvit is the radius of the vitreous chamber in that species (modeled as a sphere), and D is the diffusion coefficient of the molecule in physiological saline at 37 °C obtained from the Stokes-Einstein relation. This prediction is verified from a compilation of data and calculations on various large molecules in the human, monkey, rabbit, and rat and is consistent with the reported t1/2 values of ranibizumab in humans (mean value 7.9 days) and the calculated Tdiff of 1.59 days. Our RVR PD model is based on the publication of Saunders et al. (Br. J. Ophthalmol. 2015, 99, 1554-1559) who reported data on the time-course of VEGF levels in aqueous humor samples obtained from 31 patients receiving ranibizumab treatment for wet AMD and developed a compartmental mathematical model to describe the VEGF suppression profiles. We modified Saunders' model with the known 2:1 stoichiometry of ranibizumab-VEGF binding and included the association and dissociation kinetics of the binding reactions. Using the RVR PD model, we reanalyzed Saunders' data to estimate the in vivo dissociation constant (KD) between ranibizumab and VEGF. Our analysis demonstrates the delicate interrelationship between the in vivo KD value and the intravitreal half-life and yields an in vivo KD estimate that is appreciably larger than the in vitro KD estimates reported in the literature. Potential explanations for the difference between the in vivo and in vitro KD values, which appear to reflect the different methodologies and experimental conditions, are discussed. We conclude that the combined mechanistic model of IVT PK and RVR PD provides a useful framework for simulating the effects of dose, KD, and the molecular weight of VEGF-binding molecules on the duration of VEGF suppression.


Subject(s)
Ranibizumab/pharmacokinetics , Ranibizumab/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/therapeutic use , Animals , Haplorhini , Humans , Intravitreal Injections , Kinetics , Models, Theoretical , Rabbits , Ranibizumab/administration & dosage , Rats , Vascular Endothelial Growth Factor A/antagonists & inhibitors
4.
Ann Allergy Asthma Immunol ; 92(5): 549-57, 2004 May.
Article in English | MEDLINE | ID: mdl-15191024

ABSTRACT

BACKGROUND: Enzymes have been safely used in laundry products for many years. The risk of developing adverse responses to enzymes in laundry detergents among consumers in countries where hand laundry predominates is expected to be low. OBJECTIVES: To understand how consumers in hand laundry markets used detergent products; to show that use of enzyme-containing detergents did not lead to sensitization in an atopic population with compromised skin; and to show that enzyme detergents did not have an adverse effect on skin condition. METHODS: Women in the rural Philippines were chosen since they do hand laundry for several hours a day, every day. The skin prick test (SPT) tested for the presence of IgE antibody to common aeroallergens and to enzymes in detergent product. Atopic women used enzyme-containing laundry bars for hand laundry and personal cleansing. They also used enzyme-containing laundry granules for hand laundry. All subjects were evaluated by SPT with enzymes over 2 years. Hand and body skin conditions were also evaluated. RESULTS: None of the 1,980 subjects screened for eligibility into the 2-year study were SPT positive to enzymes, including 655 women who used enzyme-containing detergent for up to 1 year. None of the subjects in the study developed IgE to the enzymes. Enzymes had no adverse effect on skin condition or on the development of erosions on the hands. CONCLUSIONS: The 2-year study confirms that enzymes are safe for use in laundry products at or below levels tested in the study even when used by atopic consumers under extremely harsh conditions.


Subject(s)
Amylases/immunology , Detergents/adverse effects , Endopeptidases/immunology , Hypersensitivity, Immediate/immunology , Adult , Amylases/adverse effects , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Detergents/chemistry , Endopeptidases/adverse effects , Female , Humans , Hypersensitivity, Immediate/etiology , Middle Aged , Philippines , Prospective Studies , Skin Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...