Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 45(9): 3665-70, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16634599

ABSTRACT

In our continued exploratory synthesis of compounds containing transition-metal oxide magnetic nanostructures, a new copper(II) phosphate phase, Cs2Cu3P4O14 (1), was isolated employing the mixed CsCl/2CsI molten flux. The X-ray single-crystal structural analysis shows that the Cs2Cu3P4O(14) phase crystallizes in a monoclinic space group with a = 7.920(2) A, b = 10.795(2) A, c = 7.796(2) A, beta = 103.90(3) degrees , and V = 646.9(2) A(3); P2(1)/c (No. 14); Z = 2. The structure has been refined by the full-matrix least-squares method to a final solution with R1 = 0.0248, wR2 = 0.0553, and GOF = 1.02. The three-dimensional Cu-O-P framework exhibits pseudo-one-dimensional channels where the Cs+ cations reside. The framework consists of trimeric CuO4 square-planar units stacked in a staggered configuration. These CuO4 trimers are interlinked by the P2O7 units via vertex-sharing O atoms. The stacked CuO4 units are slanted with respect to the Cu...Cu...Cu vector, resulting in additional Cu-O long bonds, 2.71(1) A, and a possibly shortened Cu...Cu distance, 3.38(3) A. 1 shows limited cation substitution with smaller alkali-metal cations; in fact, only a relatively small concentration of Cs+ can be substituted by Rb+ to form Cs(2-x)RbxCu3P4O14 (0.0

SELECTION OF CITATIONS
SEARCH DETAIL
...