Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.115
Filter
1.
Breast Cancer Res ; 26(1): 96, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849928

ABSTRACT

BACKGROUND: Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression. METHODS: We used qPCR, immunoblot, and reporter assays to characterize repression of PC in hypoxic primary tumors. Steady state metabolomics were used to identify changes in metabolite pools upon PC depletion. In vivo tumor growth and metastasis assays were used to evaluate the impact of PC manipulation and pharmacologic inhibition of lactate transporters. Immunohistochemistry, flow cytometry, and global gene expression analyzes of tumor tissue were employed to characterize the impact of PC depletion on tumor immunity. RESULTS: PC is essential for metastatic colonization of the lungs. In contrast, depletion of PC in tumor cells promotes primary tumor growth. This effect was only observed in immune competent animals, supporting the hypothesis that repression of PC can suppress anti-tumor immunity. Exploring key differences between the pulmonary and mammary environments, we demonstrate that hypoxia potently downregulated PC. In the absence of PC, tumor cells produce more lactate and undergo less oxidative phosphorylation. Inhibition of lactate metabolism was sufficient to restore T cell populations to PC-depleted mammary tumors. CONCLUSIONS: We present a dimorphic role for PC in primary mammary tumors vs. pulmonary metastases. These findings highlight a key contextual role for PC-directed lactate production as a metabolic nexus connecting hypoxia and antitumor immunity.


Subject(s)
Breast Neoplasms , Pyruvate Carboxylase , Pyruvate Carboxylase/metabolism , Pyruvate Carboxylase/genetics , Animals , Female , Mice , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cell Line, Tumor , Lactic Acid/metabolism , Gene Expression Regulation, Neoplastic , Cell Hypoxia , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Immune Tolerance
3.
Laryngoscope Investig Otolaryngol ; 9(3): e1263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855776

ABSTRACT

Objectives: To establish audiological and other outcomes following cochlear implantation in humans and animals with eluting electrodes. Methods: Systematic review and narrative synthesis. Databases searched (April 2023): MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov, and Web of Science. Studies reporting outcomes in either humans or animals following cochlear implantation with a drug-eluting electrode were included. No limits were placed on language or year of publication. Risk of bias assessment was performed on all included studies using either the Brazzelli or Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) assessment tools. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Results: Searches identified 146 abstracts and 108 full texts. Of these, 18 studies met the inclusion criteria, reporting outcomes in 523 animals (17 studies) and 24 humans (1 study). Eluting electrodes included dexamethasone (16 studies), aracytine (1 study), nicotinamide adenine dinucleotide (1 study), the growth factors insulin-like growth factor 1 (IGF1) and hepatocyte growth factor (HGF) (1 study), and neurotrophin-3 (1 study). All included studies compare outcomes following implantation with an eluting electrode with a control non-eluting electrode. In the majority of studies, audiological outcomes (e.g., auditory brainstem response threshold) were superior following implantation with an eluting electrode compared with a standard electrode. Most studies which investigated post-implantation impedance reported lower impedance following implantation with an eluting electrode. The influence of eluting electrodes on other reported outcomes (including post-implantation cochlear fibrosis and the survival of hair cells and spiral ganglion neurons) was more varied across the included studies. Conclusions: Eluting electrodes have shown promise in animal studies in preserving residual hearing following cochlear implantation and in reducing impedance, though data from human studies remain lacking. Further in-human studies will be required to determine the clinical usefulness of drug-eluting cochlear implants as a future treatment for sensorineural hearing loss.

4.
J Neuroinflammation ; 21(1): 154, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851724

ABSTRACT

Extracellular vesicles (EVs) are released by all cells, can cross the blood-brain barrier, and have been shown to play an important role in cellular communication, substance shuttling, and immune modulation. In recent years EVs have shifted into focus in multiple sclerosis (MS) research as potential plasma biomarkers and therapeutic vehicles. Yet little is known about the disease-associated changes in EVs in the central nervous system (CNS). To address this gap, we characterized the physical and proteomic changes of mouse spinal cord-derived EVs before and at 16 and 25 days after the induction of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model of MS. Using various bioinformatic tools, we found changes in inflammatory, glial, and synaptic proteins and pathways, as well as a shift in the predicted contribution of immune and glial cell types over time. These results show that EVs provide snapshots of crucial disease processes such as CNS-compartmentalized inflammation, re/de-myelination, and synaptic pathology, and might also mediate these processes. Additionally, inflammatory plasma EV biomarkers previously identified in people with MS were also altered in EAE spinal cord EVs, suggesting commonalities of EV-related pathological processes during EAE and MS and overlap of EV proteomic changes between CNS and circulating EVs.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Mice, Inbred C57BL , Spinal Cord , Extracellular Vesicles/metabolism , Animals , Spinal Cord/metabolism , Spinal Cord/pathology , Mice , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Proteomics
5.
Front Physiol ; 15: 1248276, 2024.
Article in English | MEDLINE | ID: mdl-38699144

ABSTRACT

Introduction: It may take decades to develop cardiovascular dysfunction following exposure to high doses of ionizing radiation from medical therapy or from nuclear accidents. Since astronauts may be exposed continually to a complex space radiation environment unlike that experienced on Earth, it is unresolved whether there is a risk to cardiovascular health during long-term space exploration missions. Previously, we have described that mice exposed to a single dose of simplified Galactic Cosmic Ray (GCR5-ion) develop cardiovascular dysfunction by 12 months post-radiation. Methods: To investigate the biological basis of this dysfunction, here we performed a quantitative mass spectrometry-based proteomics analysis of heart tissue (proteome and phosphoproteome) and plasma (proteome only) from these mice at 8 months post-radiation. Results: Differentially expressed proteins (DEPs) for irradiated versus sham irradiated samples (fold-change ≥1.2 and an adjusted p-value of ≤0.05) were identified for each proteomics data set. For the heart proteome, there were 87 significant DEPs (11 upregulated and 76 downregulated); for the heart phosphoproteome, there were 60 significant differentially phosphorylated peptides (17 upregulated and 43 downregulated); and for the plasma proteome, there was only one upregulated protein. A Gene Set Enrichment Analysis (GSEA) technique that assesses canonical pathways from BIOCARTA, KEGG, PID, REACTOME, and WikiPathways revealed significant perturbation in pathways in each data set. For the heart proteome, 166 pathways were significantly altered (36 upregulated and 130 downregulated); for the plasma proteome, there were 73 pathways significantly altered (25 upregulated and 48 downregulated); and for the phosphoproteome, there were 223 pathways significantly affected at 0.1 adjusted p-value cutoff. Pathways related to inflammation were the most highly perturbed in the heart and plasma. In line with sustained inflammation, neutrophil extracellular traps (NETs) were demonstrated to be increased in GCR5-ion irradiated hearts at 12-month post irradiation. NETs play a fundamental role in combating bacterial pathogens, modulating inflammatory responses, inflicting damage on healthy tissues, and escalating vascular thrombosis. Discussion: These findings suggest that a single exposure to GCR5-ion results in long-lasting changes in the proteome and that these proteomic changes can potentiate acute and chronic health issues for astronauts, such as what we have previously described with late cardiac dysfunction in these mice.

6.
J Neurochem ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702968

ABSTRACT

Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.

7.
Protein Sci ; 33(6): e5008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723181

ABSTRACT

One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid ß (Aß) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aß species during the dynamic Aß aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aß oligomers and three Aß-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aß monomers, while aducanumab preferentially binds Aß monomers and dimers and A34 preferentially binds Aß dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aß binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aß antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.


Subject(s)
Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized , Ion Mobility Spectrometry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/metabolism , Ion Mobility Spectrometry/methods , Humans , Mass Spectrometry/methods , Protein Binding , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Protein Multimerization
8.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746466

ABSTRACT

The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.

9.
Arthroscopy ; 40(5): 1394-1396, 2024 May.
Article in English | MEDLINE | ID: mdl-38705639

ABSTRACT

The irreparable posterosuperior rotator cuff tear describes a tear of the supraspinatus and/or infraspinatus tendon that is massive, contracted, and immobile in both the anterior-posterior and medial-lateral directions. Patients with an intact subscapularis and preserved forward elevation are challenging to treat because there is not a consensus treatment algorithm. For low-demand, elderly patients, several subacromial surgical options are available that can provide pain relief without the risks or burden of rehabilitation posed by reverse total shoulder arthroplasty or a complex soft-tissue reconstruction (e.g., superior capsular reconstruction, tendon transfer, bridging grafts). Debridement, more specifically the "smooth-and-move" procedure, offers a reliable outcome with documented improvements in pain and function at long-term follow-up. Similarly, the biodegradable subacromial balloon spacer (InSpace; Stryker, Kalamazoo, MI) has been shown to significantly improve pain and function in patients who are not responsive to nonoperative treatment. Disease progression with these options is possible, with a small percentage of patients progressing to rotator cuff arthropathy. Biologic tuberoplasty and bursal acromial reconstruction are conceptually similar to the balloon spacer but instead use biologic grafts to prevent bone-to-bone contact between the humeral head and the acromion. Although there is no single gold standard treatment, the variety of surgical techniques allows patients and surgeons to effectively manage these challenging situations.


Subject(s)
Rotator Cuff Injuries , Humans , Acromion/surgery , Arthroscopy/methods , Debridement/methods , Plastic Surgery Procedures/methods , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Tendon Transfer/methods
10.
Methods Mol Biol ; 2808: 129-140, 2024.
Article in English | MEDLINE | ID: mdl-38743367

ABSTRACT

Many negative-sense single-stranded RNA viruses within the order Mononegavirales harm humans. A common feature shared among cells infected by these viruses is the formation of subcellular membraneless structures called biomolecular condensates, also known as inclusion bodies (IBs), that form through a process called liquid-liquid phase separation (LLPS). Like many other membraneless organelles, viral IBs enrich a specific subset of viral and host proteins involved in the formation of viral particles. Elucidation of the properties and regulation of these IBs as they mature throughout the viral replication process are important for our understanding of viral replication, which may also lead to the development of alternative antiviral treatments. The protocol outlined in this chapter aims to characterize the intrinsic properties of LLPS within the measles virus (MeV, a member of Mononegavirales) IBs by using an imaging approach that fluorescently tags an IB-associated host protein. This method uses common laboratory techniques and is generalizable to any host factors as well as other viral systems.


Subject(s)
Fluorescence Recovery After Photobleaching , Inclusion Bodies, Viral , Measles virus , Humans , Inclusion Bodies, Viral/metabolism , Fluorescence Recovery After Photobleaching/methods , Measles virus/physiology , Measles virus/metabolism , Virus Replication , Inclusion Bodies/metabolism , Animals , Host-Pathogen Interactions , Phase Separation
11.
JBJS Case Connect ; 14(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38788054

ABSTRACT

CASE: A 34-year-old man was a restrained passenger involved in a high-speed rollover motor vehicle crash. The patient sustained a type 5 AC joint separation, severely comminuted intra-articular glenoid fracture with extension to the coracoid process base, displaced open scapular body fracture, a posterior shoulder dislocation of the glenohumeral joint, and a 2-part proximal humerus fracture. CONCLUSION: To our knowledge, this is the first report describing this injury pattern involving the superior shoulder suspensory complex with an associated open proximal humerus fracture-dislocation.


Subject(s)
Shoulder Dislocation , Shoulder Fractures , Humans , Male , Adult , Shoulder Fractures/surgery , Shoulder Fractures/diagnostic imaging , Shoulder Dislocation/surgery , Shoulder Dislocation/diagnostic imaging , Fractures, Open/surgery , Fractures, Open/diagnostic imaging , Accidents, Traffic , Fractures, Comminuted/surgery , Fractures, Comminuted/diagnostic imaging
12.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38701782

ABSTRACT

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Subject(s)
Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
13.
Fungal Biol ; 128(3): 1758-1770, 2024 May.
Article in English | MEDLINE | ID: mdl-38796260

ABSTRACT

Starting in the fall of 2019, mortality, blight symptoms, and signs of white fungal mycelia were observed on external host tissues of non-native landscape trees as well as numerous native trees, understory shrubs, and vines throughout northern and central Florida, USA. We determined that the fungus is an undescribed species of Basidiomycota based on morphological characteristics and DNA sequence analysis. Phylogenetic analyses of the internal transcribed spacer (ITS), large subunit (LSU), and translation elongation factor 1-alpha (tef1) regions revealed that this novel plant pathogen is an undescribed taxon of the genus Parvodontia (Cystostereaceae, Agaricales). We propose the name Parvodontia relampaga sp. nov. which describes its unique morphological features and phylogenetic placement. We confirmed the pathogenicity of P. relampaga in greenhouse inoculations on host plants from which strains of this novel pathogen were isolated, including the non-native gymnosperm Afrocarpus falcatus, the non-native and commercially important Ligustrum japonicum, and the native tree Quercus hemisphaerica. P. relampaga was also detected on a total of 27 different species of woody host plants, including such economically and ecologically important hosts as Fraxinus, Ilex, Magnolia, Persea, Prunus, Salix, Vitis, and Vaccinium. For this new plant disease, we propose the name "relampago blight," which refers to the lightning-like rhizomorph growth (relámpago means 'lightning' in Spanish). This study presents a newly discovered fungal taxon with a wide host range on both angiosperms and gymnosperms that may be an emerging pathogen of concern in Florida and the Gulf Coast region.


Subject(s)
DNA, Fungal , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Florida , DNA, Fungal/genetics , Agaricales/genetics , Agaricales/classification , Agaricales/isolation & purification , Agaricales/physiology , Agaricales/pathogenicity , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry
14.
Clin Lung Cancer ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38796323

ABSTRACT

BACKGROUND: Measures of systemic inflammation (MSIs) have been developed and shown to help predict prognosis in patients with lung cancer. However, studies investigating the impact of MSIs on outcomes solely in cohorts of patients undergoing curative-intent resection of NSCLC are lacking. In the era of individualized therapies, targeting inflammatory pathways could represent a novel addition to the armamentarium of lung cancer treatment. METHODS: A multicentre retrospective review of patients who underwent primary lung cancer resection between 2012 and 2018 was undertaken. MSIs assessed were neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), systemic immune inflammation index (SII), advanced lung cancer inflammation index (ALI), prognostic nutritional index (PNI) and haemoglobin albumin lymphocyte platelet (HALP) score. Cox regression analysis was performed to assess the impact of MSIs on overall survival. RESULTS: A total of 5029 patients were included in the study. Overall 90-day mortality was 3.7% (n = 185). All MSIs were significantly associated with overall survival on univariable analysis. After multivariable Cox regression analyses, lower ALI (expressed as a continuous variable) (HR 1.000, 95% CI 1.000-1.000, P = .049) and ALI <366.43 (expressed as a dichotomous variable) (HR 1.362, 95% CI 1.137-1.631, P < .001) remained independently associated with reduced overall survival. CONCLUSIONS: MSIs have emerged in this study as potentially important factors associated with survival following lung resection for NSCLC with curative intent. In particular, ALI has emerged as independently associated with long-term outcomes. The role of MSIs in the clinical management of patients with primary lung cancer requires further investigation.

15.
Viruses ; 16(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38793574

ABSTRACT

Influenza viruses are constantly evolving and are therefore monitored worldwide in the hope to reduce the burden of disease by annual updates to vaccine recommendations. We conducted genomic sequencing of 110 influenza A and 30 influenza B viruses from specimens collected between October 2023 and February 2024 in Arizona, USA. We identified mutations in the hemagglutinin (HA) antigenic sites as well as the neuraminidase (NA) gene in our samples. We also found no unique HA and NA mutations in vaccinated yet influenza-infected individuals. Real-time genomic sequencing surveillance is important to ensure influenza vaccine effectiveness.


Subject(s)
Genome, Viral , Influenza A virus , Influenza B virus , Influenza, Human , Mutation , Neuraminidase , Arizona/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Influenza B virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Genomics/methods , Phylogeny , Adult , Epidemiological Monitoring , Child , Adolescent , Middle Aged , Male , Female , Child, Preschool , Aged , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Young Adult , Whole Genome Sequencing
16.
Prostaglandins Leukot Essent Fatty Acids ; 201: 102617, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38788347

ABSTRACT

BACKGROUND: Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS: The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS: LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION: Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.

17.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754047

ABSTRACT

OBJECTIVES: To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS: People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS: A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION: NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.


Subject(s)
Atrophy , Brain , Extracellular Vesicles , Multiple Sclerosis , Retina , Synaptophysin , Humans , Male , Female , Middle Aged , Extracellular Vesicles/metabolism , Adult , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Retina/pathology , Retina/diagnostic imaging , Retina/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Synaptophysin/metabolism , Tomography, Optical Coherence , Magnetic Resonance Imaging , Microfilament Proteins/metabolism
18.
mSphere ; 9(5): e0010524, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712930

ABSTRACT

Wastewater surveillance can reveal population-level infectious disease burden and emergent public health threats can be reliably assessed through wastewater surveillance. While molecular methods for wastewater monitoring of microorganisms have traditionally relied on PCR-based approaches, next-generation sequencing (NGS) can provide deeper insights via genomic analyses of multiple diverse pathogens. We conducted a year-long sequencing surveillance of 1,408 composite wastewater samples collected from 12 neighborhood-level access points in the greater Tempe area, Arizona, USA, and show that variation in wastewater viruses is driven by seasonal time and location. The temporal dynamics of viruses in wastewater were influenced cyclically, with the most dissimilarity between samples 23 weeks apart (i.e., winter vs summer, spring vs fall). We identified diverse urinary and enteric viruses including polyomaviruses, astroviruses, and noroviruses, and showed that their genotypes/subtypes shifted across seasons. We show that while wastewater data of certain respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly correlate with clinical case rates, laboratory-reported case incidences were discordant with surges of high viral load in wastewater for other viruses like human coronavirus 229E. These results demonstrate the utility of wastewater sequencing for informing decision-making in public health.IMPORTANCEWastewater surveillance can provide insights into the spread of pathogens in communities. Advances in next-generation sequencing (NGS) methodologies allow for more precise detection of viruses in wastewater. Long-term wastewater surveillance of viruses is an important tool for public health preparedness. This system can act as a public health observatory that gives real-time early warning for infectious disease outbreaks and improved response times.


Subject(s)
High-Throughput Nucleotide Sequencing , Seasons , Wastewater , Wastewater/virology , Arizona/epidemiology , Humans , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Wastewater-Based Epidemiological Monitoring , Genotype , Polyomavirus/genetics , Polyomavirus/isolation & purification , Polyomavirus/classification , Genomics/methods , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/classification , Enterovirus/genetics , Enterovirus/isolation & purification , Enterovirus/classification , COVID-19/epidemiology , COVID-19/virology
19.
Age Ageing ; 53(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38783753

ABSTRACT

BACKGROUND AND OBJECTIVES: People with parkinsonism who are older, living in a care home, with frailty, multimorbidity or impaired capacity to consent are under-represented in research, limiting its generalisability. We aimed to evaluate more inclusive recruitment strategies. METHODS: From one UK centre, we invited people with parkinsonism to participate in a cross-sectional study. Postal invitations were followed by telephone reminders and additional support to facilitate participation. Personal consultees provided information on the views regarding research participation of adults with impaired capacity. These approaches were evaluated: (i) using external data from the Parkinson's Real World Impact assesSMent (PRISM) study and Clinical Practice Research Datalink (CPRD), a sample of all cases in UK primary care, and (ii) comparing those recruited with or without intensive engagement. RESULTS: We approached 1,032 eligible patients, of whom 542 (53%) consented and 477 (46%) returned questionnaires. The gender ratio in PRIME-UK (65% male) closely matched CPRD (61% male), unlike in the PRISM sample (46%). Mean age of PRIME participants was 75.9 (SD 8.5) years, compared to 75.3 (9.5) and 65.4 (8.9) years for CPRD and PRISM, respectively. More intensive engagement enhanced recruitment of women (13.3%; 95% CI 3.8, 22.9%; P = 0.005), care home residents (6.2%; 1.1, 11.2%; P = 0.004), patients diagnosed with atypical parkinsonism (13.7%; 5.4, 19.9%; P < 0.001), and those with a higher frailty score (mean score 0.2, 0.1, 0.2; P < 0.001). CONCLUSIONS: These recruitment strategies resulted in a less biased and more representative sample, with greater inclusion of older people with more complex parkinsonism.


Subject(s)
Cognitive Dysfunction , Frailty , Multimorbidity , Parkinson Disease , Patient Selection , Humans , Male , Female , Aged , Cross-Sectional Studies , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Cognitive Dysfunction/diagnosis , United Kingdom/epidemiology , Frailty/epidemiology , Frailty/psychology , Frailty/diagnosis , Aged, 80 and over , Parkinson Disease/psychology , Parkinson Disease/epidemiology , Parkinson Disease/diagnosis , Frail Elderly/psychology , Frail Elderly/statistics & numerical data , Parkinsonian Disorders/epidemiology , Parkinsonian Disorders/psychology , Parkinsonian Disorders/diagnosis
20.
JMIR Aging ; 7: e50759, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717339

ABSTRACT

Background: Informal caregivers are called upon to provide substantial care, but more needs to be known about technology use among older adult and caregiver dyads. Objective: This study described technology use among older adults and their caregivers, explored potential correlates of technology use, and highlighted implications for practice. Methods: A cross-sectional survey was conducted among unpaid caregivers of older adults (n=486). Primary outcomes were self-reported technology (devices and functions) use among caregivers and their oldest care recipient. The concordance of technology use among caregivers and care recipients was also examined. Multivariable regression models were conducted separately for caregivers and care recipients. Results: Greater proportions of caregivers used all examined technologies, except for the medication alerts or tracking function, than care recipients. Caregivers used an average of 3.4 devices and 4.2 functions, compared to 1.8 devices and 1.6 functions used by their care recipients. Among caregivers, younger age, higher income, and higher education were associated with more technology use (P<.05). Among care recipients, younger age, not having cognitive dysfunction, and caregiver's technology use were associated with more technology use (P<.05). Conclusions: Understanding technology use patterns and device adoption across diverse caregiver and care recipient populations is increasingly important for enhancing geriatric care. Findings can guide recommendations about appropriate technology interventions and help providers communicate and share information more effectively with patients and their caregivers.


Subject(s)
Caregivers , Humans , Caregivers/psychology , Caregivers/statistics & numerical data , Cross-Sectional Studies , Male , Female , Aged , Aged, 80 and over , Middle Aged , Surveys and Questionnaires , Self Report , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...