Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11747, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817808

ABSTRACT

Grinding stones and ground stone implements are important technological innovations in later human evolution, allowing the exploitation and use of new plant foods, novel tools (e.g., bone points and edge ground axes) and ground pigments. Excavations at the site of Madjedbebe recovered Australia's (if not one of the world's) largest and longest records of Pleistocene grinding stones, which span the past 65 thousand years (ka). Microscopic and chemical analyses show that the Madjedbebe grinding stone assemblage displays the earliest known evidence for seed grinding and intensive plant use, the earliest known production and use of edge-ground stone hatchets (aka axes), and the earliest intensive use of ground ochre pigments in Sahul (the Pleistocene landmass of Australia and New Guinea). The Madjedbebe grinding stone assemblage reveals economic, technological and symbolic innovations exemplary of the phenotypic plasticity of Homo sapiens dispersing out of Africa and into Sahul.


Subject(s)
Bone and Bones , Technology , Africa , Archaeology , Australia , Humans , New Guinea
3.
Phys Med Biol ; 52(23): 6991-7006, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-18029989

ABSTRACT

We have investigated improvements to PET-MR image registration offered by PET-CT scanning. Ten subjects with suspected soft-tissue sarcomas were scanned with an in-line PET-CT and a clinical MR scanner. PET to CT, CT to MR and PET to MR image registrations were performed using a rigid-body external marker technique and rigid and non-rigid voxel-similarity algorithms. PET-MR registration was also performed using transformations derived from the registration of CT to MR. The external marker technique gave fiducial registration errors of 2.1 mm, 5.1 mm and 5.3 mm for PET-CT, PET-MR and CT-MR registration. Target registration errors were 3.9 mm, 9.0 mm and 9.3 mm, respectively. Voxel-based algorithms were evaluated by measuring the distance between corresponding fiducials after registration. Registration errors of 6.4 mm, 14.5 mm and 9.5 mm, respectively, for PET-CT, PET-MR and CT-MR were observed for rigid-body registration while non-rigid registration gave errors of 6.8 mm, 16.3 mm and 7.6 mm for the same modality combinations. The application of rigid and non-rigid CT to MR transformations to accompanying PET data gives significantly reduced PET-MR errors of 10.0 mm and 8.5 mm, respectively. Visual comparison by two independent observers confirmed the improvement over direct PET-MR registration. We conclude that PET-MR registration can be more accurately and reliably achieved using the hybrid technique described than through direct rigid-body registration of PET to MR.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Sarcoma/diagnosis , Soft Tissue Neoplasms/diagnosis , Subtraction Technique , Tomography, X-Ray Computed/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...