Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant J ; 117(4): 1206-1222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038953

ABSTRACT

MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.


Subject(s)
Arabidopsis , MicroRNAs , Base Pairing/genetics , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Double-Stranded , Arabidopsis/genetics
2.
Nat Commun ; 13(1): 3926, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798725

ABSTRACT

Hairpin RNA (hpRNA) transgenes are the most successful RNA interference (RNAi) method in plants. Here, we show that hpRNA transgenes are invariably methylated in the inverted-repeat (IR) DNA and the adjacent promoter, causing transcriptional self-silencing. Nucleotide substitutions in the sense sequence, disrupting the IR structure, prevent the intrinsic DNA methylation resulting in more uniform and persistent RNAi. Substituting all cytosine with thymine nucleotides, in a G:U hpRNA design, prevents self-silencing but still allows for the formation of hpRNA due to G:U wobble base-pairing. The G:U design induces effective RNAi in 90-96% of transgenic lines, compared to 57-65% for the traditional hpRNA design. While a traditional hpRNA transgene shows increasing self-silencing from cotyledons to true leaves, its G:U counterpart avoids this and induce RNAi throughout plant growth. Furthermore, siRNAs from G:U and traditional hpRNA show different characteristics and appear to function via different pathways to induce target DNA methylation.


Subject(s)
Nucleotides , Plants , Nucleotides/genetics , Nucleotides/metabolism , Plants/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transgenes/genetics
3.
Epigenetics ; 14(11): 1074-1087, 2019 11.
Article in English | MEDLINE | ID: mdl-31189415

ABSTRACT

DNA demethylases function in conjunction with DNA methyltransferases to modulate genomic DNA methylation levels in plants. The Arabidopsis genome contains four DNA demethylase genes, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1) also known as DEMETER-LIKE 1 (DML1), DML2, and DML3. While ROS1, DML2, and DML3 were shown to function in disease response in somatic tissues, DME has been thought to function only in reproductive tissues to maintain the maternal-specific expression pattern of a subset of imprinted genes. Here we used promoter:ß-glucuronidase (GUS) fusion constructs to show that DME is constitutively expressed throughout the plant, and that ROS1, DML2, and DML3 have tissue-specific expression patterns. Loss-of-function mutations in DME cause seed abortion and therefore viable DME mutants are not available for gene function analysis. We knocked down DME expression in a triple ros1 dml2 dml3 (rdd) mutant background using green tissue-specific expression of a hairpin RNA transgene (RNAi), generating a viable 'quadruple' demethylase mutant line. We show that this rdd DME RNAi line has enhanced disease susceptibility to Fusarium oxysporum infection compared to the rdd triple mutant. Furthermore, several defence-related genes, previously shown to be repressed in rdd, were further repressed in the rdd DME RNAi plants. DNA methylation analysis of two of these genes revealed increased differential promoter DNA methylation in rdd DME RNAi plants compared to WT, beyond the difference observed in the parental rdd plants. These results indicate that DME contributes to DNA demethylase activity and disease response in somatic tissues.


Subject(s)
Arabidopsis Proteins/genetics , DNA Methylation , Disease Resistance , N-Glycosyl Hydrolases/genetics , Trans-Activators/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Fusarium/pathogenicity , Gene Expression Regulation, Plant , Loss of Function Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
4.
Genes (Basel) ; 10(6)2019 06 15.
Article in English | MEDLINE | ID: mdl-31208028

ABSTRACT

Hairpin-structured (hp) RNA has been widely used to induce RNA interference (RNAi) in plants and animals, and an in vivo expression system for hpRNA is important for large-scale RNAi applications. Bacterial expression systems have so far been developed for in vivo expression of hpRNA or double-stranded (ds) RNA, but the structure of the resulting RNAi molecules has remained unclear. Here we report that long hpRNAs expressed in the bacteria Escherichia coli and Sinorhizobium meliloti were largely processed into shorter dsRNA fragments with no or few full-length molecules being present. A loss-of-function mutation in the dsRNA-processing enzyme RNase III, in the widely used E. coli HT115 strain, did not prevent the processing of hpRNA. Consistent with previous observations in plants, the loop sequence of long hpRNA expressed in Agrobacterium-infiltrated Nicotiana benthamiana leaves was excised, leaving no detectable levels of full-length hpRNA molecule. In contrast to bacteria and plants, long hpRNAs expressed in the budding yeast Saccharomyces cerevisiae accumulated as intact, full-length molecules. RNA extracted from hpRNA-expressing yeast cells was shown to be capable of inducing RNAi against a ß-glucuronidase (GUS) reporter gene in tobacco leaves when applied topically on leaf surfaces. Our results indicate that yeast can potentially be used to express full-length hpRNA molecules for RNAi and perhaps other structured RNAs that are important in biological applications.


Subject(s)
Nucleic Acid Conformation , RNA, Double-Stranded/chemistry , Saccharomyces cerevisiae/chemistry , Agrobacterium/chemistry , Agrobacterium/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Loss of Function Mutation , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , RNA Interference , RNA, Double-Stranded/genetics , Ribonuclease III/chemistry , Ribonuclease III/genetics , Saccharomyces cerevisiae/genetics , Nicotiana/chemistry , Nicotiana/genetics
5.
Genes (Basel) ; 9(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30428604

ABSTRACT

Transposable elements (TEs) are widespread in the plant genome and can impact on the expression of neighbouring genes. Our previous studies have identified a number of DNA demethylase-regulated defence-related genes that contain TE sequences in the promoter and show tissue-specific expression in Arabidopsis. In this study we investigated the role of the promoter TE insertions in the root-specific expression of a DNA demethylase-regulated gene, AT5G38550, encoding a Jacalin lectin family protein. Using a promoter:GUS fusion reporter gene approach, we first demonstrated that the full-length promoter fragment, carrying four TE sequences, contained the essential regulatory information required for root-specific expression and DNA demethylase regulation in Arabidopsis. By successive deletion of the four TE sequences, we showed that one of the four TE insertions, a 201-bp TE fragment of the hAT DNA transposon family, was required for root-specific expression: Deletion of this TE, but not the first two TE sequences, converted the root-specific expression pattern to a constitutive expression pattern in Arabidopsis plants. Our study provides an example indicating an important role of TE insertions in tissue-specific expression of plant defence-related genes.

6.
Wiley Interdiscip Rev RNA ; 7(1): 5-16, 2016.
Article in English | MEDLINE | ID: mdl-26481458

ABSTRACT

Viral satellite RNAs (satRNAs) are among the smallest RNA pathogens in plants. They have little or no protein-coding capacity but can have a major impact on the host plants through trilateral interactions with helper viruses and host plants. Studies around the 1980s revealed much of what we know about satRNAs: they can affect helper virus accumulation, modulate helper virus-induced disease symptoms, and induce their own symptoms with the assistance of helper viruses which depend on specific nucleotide sequences of their genome and host species. The molecular basis of these satRNA-caused impacts and the origin of satRNAs have yet to be fully understood and revealed, but recent understanding of the antiviral RNA silencing pathways and advancement in RNA and DNA sequencing technologies have provided new avenues and opportunities to examine these unanswered questions. These RNA silencing-based studies have revealed the existence of cross silencing between some satRNAs and helper viruses, the downregulation of helper virus-encoded suppressor (VSR) of RNA silencing or inhibition/enhancement of VSR activity by satRNAs, the silencing of host-encoded genes by satRNA-derived small interfering RNA (siRNAs), and the presence of satRNA-like small RNAs in uninfected host plants. These findings have provided alternative RNA silencing-based models to explain the pathogenicity and origin of satRNAs. WIREs RNA 2016, 7:5-16. doi: 10.1002/wrna.1311 For further resources related to this article, please visit the WIREs website.


Subject(s)
Plant Diseases/virology , RNA Interference , RNA, Satellite , RNA, Viral , Helper Viruses/genetics , Plants/virology
7.
Curr Genomics ; 17(6): 476-489, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28217004

ABSTRACT

Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.

8.
Front Plant Sci ; 6: 281, 2015.
Article in English | MEDLINE | ID: mdl-25964791

ABSTRACT

Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a ß-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function.

9.
PLoS Genet ; 11(1): e1004906, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568943

ABSTRACT

Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a ß-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.


Subject(s)
Cucumber Mosaic Virus Satellite/genetics , Cucumovirus/genetics , Glucuronidase/genetics , Nicotiana/genetics , Cucumovirus/pathogenicity , DNA Methylation/genetics , Gene Silencing , Genome, Plant , Helper Viruses/genetics , Plants, Genetically Modified , RNA, Small Interfering , Sequence Analysis, RNA , Nicotiana/virology , Transgenes
10.
Methods Mol Biol ; 1236: 99-109, 2015.
Article in English | MEDLINE | ID: mdl-25287499

ABSTRACT

RNA silencing is not only a gene regulation mechanism that is conserved in a broad range of eukaryotes but also an adaptive immune response against foreign nucleic acids including viruses in plants. A major feature of RNA silencing is the production of small RNA (sRNA) of 21-24 nucleotides (nt) in length from double-stranded (ds) or hairpin-like (hp) RNA by Dicer-like (DCL) proteins. These sRNAs guide the binding and cleavage of cognate single-stranded (ss) RNA by an RNA silencing complex. Like all plant viruses and subviral agents, replication of viral satellite RNAs (satRNAs) is associated with the accumulation of 21-24 nt viral small interfering RNA (vsiRNA) derived from the whole region of a satRNA genome in both plus and minus-strand polarities. These satRNA-derived siRNAs (satsiRNAs) have recently been shown to play an important role in the trilateral interactions among host plants, helper viruses and satRNAs. Here, we describe the cloning and profile analysis of satsiRNAs from satRNAs of Cucumber mosaic virus (CMV). We also describe a method to minimize the strand bias that often occurs during vsiRNA cloning and sequencing.


Subject(s)
Cloning, Molecular , Cucumovirus/genetics , RNA, Satellite , Chromosome Mapping/methods , Electrophoresis, Polyacrylamide Gel/methods , Gene Expression Regulation, Viral , RNA, Satellite/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods
11.
Genome Biol ; 15(9): 458, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25228471

ABSTRACT

BACKGROUND: DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. RESULTS: We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. CONCLUSIONS: Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.


Subject(s)
Arabidopsis/genetics , DNA Transposable Elements , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Methylation , Disease Resistance , Fusarium/physiology , Gene Expression , Gene Knockout Techniques , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Diseases/microbiology , Stress, Physiological
12.
Virology ; 450-451: 266-77, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24503090

ABSTRACT

Potato spindle tuber viroid (PSTVd) is a small non-protein-coding RNA pathogen that can induce disease symptoms in a variety of plant species. How PSTVd induces disease symptoms is a long standing question. It has been suggested that PSTVd-derived small RNAs (sRNAs) could direct RNA silencing of a targeted host gene(s) resulting in symptom development. To test this, we expressed PSTVd sequences as artificial microRNAs (amiRNAs) in Nicotiana tabacum and Nicotiana benthamiana. One amiRNA, amiR46 that corresponds to sequences within the PSTVd virulence modulating region (VMR), induced abnormal phenotypes in both Nicotiana species that closely resemble those displayed by PSTVd infected plants. In N. tabacum amiR46 plants, phenotype severity correlated with amiR46 accumulation and expression down-regulation of the bioinformatically-identified target gene, a Nicotiana soluble inorganic pyrophosphatase (siPPase). Taken together, our phenotypic and molecular analyses suggest that disease symptom development in Nicotiana species following PSTVd infection results from sRNA-directed RNA silencing of the host gene, siPPase.


Subject(s)
Gene Silencing , Inorganic Pyrophosphatase/genetics , MicroRNAs/genetics , Nicotiana/enzymology , Plant Diseases/virology , Plant Proteins/genetics , RNA, Viral/genetics , Viroids/genetics , Base Sequence , Inorganic Pyrophosphatase/metabolism , MicroRNAs/metabolism , Molecular Sequence Data , Plant Diseases/genetics , Plant Proteins/metabolism , RNA, Viral/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/virology , Viroids/metabolism , Viroids/pathogenicity , Virulence
13.
J Labelled Comp Radiopharm ; 56(9-10): 455-60, 2013.
Article in English | MEDLINE | ID: mdl-24285520

ABSTRACT

17ß-Hydroxyestra-4,9,11-trien-3-one or trenbolone is an anabolic steroid used in some meat producing countries where its use is licenced. In cattle it is metabolised into 17α-trenbolone. We were required to make 17α-[4-(14) C]trenbolone for use in environmental fate studies. At the same time we also had a request to make 17α-[4-(14) C]estradiol so we combined the two syntheses and made use of the synergy to allow us to make a batch of 17α-[4-(14) C]estradiol by known methodology and then elaborate a portion of this into 17α-[4-(14) C]trenbolone. The synthesis of 17α-[4-(14) C]trenbolone from 17α-[4-(14) C]estradiol was achieved in 8 steps and 3.1% overall yield to give material with a radiochemical purity of 99.5% and specific activity of 59 mCi/mmol.


Subject(s)
Trenbolone Acetate/chemistry , Trenbolone Acetate/chemical synthesis , Carbon Radioisotopes/chemistry , Chemistry Techniques, Synthetic , Estradiol/chemistry , Isotope Labeling , Stereoisomerism , Substrate Specificity
14.
Silence ; 4(1): 3, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23819794

ABSTRACT

BACKGROUND: Hairpin RNA (hpRNA) transgenes can be effective at inducing RNA silencing and have been exploited as a powerful tool for gene function analysis in many organisms. However, in fungi, expression of hairpin RNA transcripts can induce post-transcriptional gene silencing, but in some species can also lead to transcriptional gene silencing, suggesting a more complex interplay of the two pathways at least in some fungi. Because many fungal species are important pathogens, RNA silencing is a powerful technique to understand gene function, particularly when gene knockouts are difficult to obtain. We investigated whether the plant pathogenic fungus Fusarium oxysporum possesses a functional gene silencing machinery and whether hairpin RNA transcripts can be employed to effectively induce gene silencing. RESULTS: Here we show that, in the phytopathogenic fungus F. oxysporum, hpRNA transgenes targeting either a ß-glucuronidase (Gus) reporter transgene (hpGus) or the endogenous gene Frp1 (hpFrp) did not induce significant silencing of the target genes. Expression analysis suggested that the hpRNA transgenes are prone to transcriptional inactivation, resulting in low levels of hpRNA and siRNA production. However, the hpGus RNA can be efficiently transcribed by promoters acquired either by recombination with a pre-existing, actively transcribed Gus transgene or by fortuitous integration near an endogenous gene promoter allowing siRNA production. These siRNAs effectively induced silencing of a target Gus transgene, which in turn appeared to also induce secondary siRNA production. Furthermore, our results suggested that hpRNA transcripts without poly(A) tails are efficiently processed into siRNAs to induce gene silencing. A convergent promoter transgene, designed to express poly(A)-minus sense and antisense Gus RNAs, without an inverted-repeat DNA structure, induced consistent Gus silencing in F. oxysporum. CONCLUSIONS: These results indicate that F. oxysporum possesses functional RNA silencing machineries for siRNA production and target mRNA cleavage, but hpRNA transgenes may induce transcriptional self-silencing due to its inverted-repeat structure. Our results suggest that F. oxysporum possesses a similar gene silencing pathway to other fungi like fission yeast, and indicate a need for developing more effective RNA silencing technology for gene function studies in this fungal pathogen.

15.
BMC Res Notes ; 6: 71, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23442734

ABSTRACT

BACKGROUND: Fungal RNA samples are usually isolated from fungal mycelia grown in liquid culture, which relies on prolific growth of the fungus in liquid media. The fungal biomass is then collected by vacuum filtration, which can result in low recovery for samples with reduced biomass due to poor growth in liquid media. FINDINGS: Here we report an alternative culturing method, based on growth on solid media which is independent of the ability of a fungus to grow in liquid culture. We show that growth on solid media overlayed with a nylon membrane is superior to other culturing methods, producing large amounts of biomass and allowing for easy harvesting of fungal mycelia. Furthermore, we show that mycelium harvested with this method yielded high-quality RNA, superior to RNA isolated from liquid grown mycelium. We also show that inclusion of a second chloroform extraction step in the procedure significantly increases RNA yield. CONCLUSIONS: This method is particularly useful for fungal species that show poor or no growth in liquid media, but are easily cultured on solid media. Culturing can be performed on small petri dishes, which significantly reduces handling and therefore allowing growth and isolation of RNA from multiple strains in a high throughput manner. The obtained RNA samples are of high quality in sufficient quantities for several northern blot experiments or quantitative RT-PCR experiments.


Subject(s)
Fusarium/genetics , Mycelium/genetics , RNA, Fungal/biosynthesis , Biomass
16.
Mol Plant Microbe Interact ; 25(10): 1275-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22670757

ABSTRACT

RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.


Subject(s)
Plant Diseases/virology , Plant Viruses/physiology , Plants/virology , RNA Interference , Gene Expression Regulation, Plant , Gene Expression Regulation, Viral , Plant Diseases/genetics , Plant Viruses/genetics , Plants/genetics
17.
Methods Mol Biol ; 894: 155-72, 2012.
Article in English | MEDLINE | ID: mdl-22678579

ABSTRACT

In plants, several classes of non-coding small RNA (sRNA) have been shown to be important regulators of gene expression in a wide variety of biological processes. The two main classes of sRNA, the small-interfering RNA (siRNA) and microRNA (miRNA) classes, are well documented and several experimental approaches have been developed to allow for their routine isolation and detection from plant tissues. Here, we describe the current methods used for the isolation of total RNA and the subsequent enrichment of low-molecular-weight (LMW) RNA species, as well as to outline how sRNAs are detected from such nucleic acid preparations.


Subject(s)
MicroRNAs/isolation & purification , RNA, Plant/isolation & purification , RNA, Small Interfering/isolation & purification , Arabidopsis/genetics , Hordeum/genetics , MicroRNAs/genetics , Oryza/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics , Nicotiana/genetics , Triticum/genetics
18.
PLoS Pathog ; 7(5): e1002022, 2011 May.
Article in English | MEDLINE | ID: mdl-21573142

ABSTRACT

The Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco). How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA)-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt) complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi) vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.


Subject(s)
Gene Silencing , Lyases/genetics , Nicotiana/genetics , Plant Diseases/genetics , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Down-Regulation , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Molecular Sequence Data , Plant Diseases/virology , Plant Viruses/physiology , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Plasmids , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Satellite/genetics , RNA, Satellite/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , Nicotiana/enzymology , Nicotiana/virology , Virus Replication
19.
Mol Plant ; 4(1): 157-70, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20943811

ABSTRACT

We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted. Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants.


Subject(s)
Arabidopsis/genetics , Gene Silencing , MicroRNAs/chemical synthesis , MicroRNAs/genetics , RNA, Plant/genetics , Arabidopsis/metabolism , Base Sequence , Gene Expression Regulation, Plant , MicroRNAs/chemistry , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Plant/chemistry , RNA, Plant/metabolism
20.
Genetics ; 187(2): 409-23, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21078688

ABSTRACT

Previous studies have suggested that transgene expression in plants can be affected by ploidy. Here we show that three different transgenes, a reporter transgene, an antisense transgene, and a hairpin RNA (hpRNA) transgene, are all expressed at a lower level in autotetraploid (4n) than in diploid (2n) Arabidopsis. RNA silencing of two endogenous genes was induced by the antisense and hpRNA transgenes and this silencing is significantly less effective in 4n than in 2n Arabidopsis; furthermore, the reduced silencing in 4n Arabidopsis correlated with reduced accumulation of silencing-inducer RNAs. Methylation analysis both of independent 2n and 4n transgenic lines and of 2n and 4n progeny derived from the same 3n transgenic parent, indicated that transgenes are more methylated in 4n than 2n Arabidopsis. These results suggest that transgenes are transcriptionally repressed in the 4n background, resulting in expression levels lower than in the 2n background. Transgenes designed to silence endogenous genes express lower concentrations of silencing-inducer RNAs in 4n Arabidopsis plants, resulting in less effective silencing of target genes than in 2n Arabidopsis plants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Ploidies , Transgenes , DNA Methylation , Gene Order , Gene Silencing/drug effects , Glucuronidase/genetics , Glucuronidase/metabolism , Glucuronidase/pharmacology , RNA Interference/drug effects , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Antisense/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...