Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 8(9): 660-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23955811

ABSTRACT

Discovered almost two decades ago, the solution-liquid-solid (SLS) method for semiconductor nanowire synthesis has proven to be an important route to high-quality, single-crystalline anisotropic nanomaterials. In execution, the SLS technique is similar to colloidal quantum-dot synthesis in that it entails the injection of chemical precursors into a hot surfactant solution, but mechanistically it is considered the solution-phase analogue to vapour-liquid-solid (VLS) growth. Both SLS and VLS methods make use of molten metal nanoparticles to catalyse the nucleation and elongation of single-crystalline nanowires. Significantly, however, the methods differ in how chemical precursors are introduced to the metal catalysts. In SLS, precursors are added in a one-off fashion in a flask, whereas in VLS they are carried by a flow of gas through the reaction chamber, and by-products are removed similarly. The ability to dynamically control the introduction of reactants and removal of by-products in VLS synthesis has enabled a degree of synthetic control not possible with SLS growth. We show here that SLS synthesis can be transformed into a continuous technique using a microfluidic reactor. The resulting flow-based SLS ('flow-SLS') platform allows us to slow down the synthesis of nanowires and capture mechanistic details concerning their growth in the solution phase, as well as synthesize technologically relevant axially heterostructured semiconductor nanowires, while maintaining the propensity of SLS for accessing ultrasmall diameters below 10 nm.

2.
Dalton Trans ; 41(7): 1924-7, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22193947

ABSTRACT

The preparation of a series of CeBr(3) molecular adducts supported by the polydentate oxygen donor ligands diglyme, dimethoxyethane and tetraglyme is reported. The new complexes are characterized structurally by X-ray diffraction and optically by photoluminescence studies.

3.
Inorg Chem ; 50(13): 5990-6009, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21598910

ABSTRACT

[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and ß = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via µ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (∼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(⊥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(⊥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.


Subject(s)
Electrons , Magnetics , Organometallic Compounds/chemistry , Quantum Theory , Hydrofluoric Acid/chemistry , Molecular Structure , Nickel/chemistry , Organometallic Compounds/chemical synthesis , Pyrazines/chemistry
4.
Inorg Chem ; 50(10): 4627-31, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21476538

ABSTRACT

A novel synthetic route to a series of cerium bromide solvates is reported. The combination of bulk cerium bromide and the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide results in a precursor paste that enhances the solubility of the cerium(III)bromide moiety in a number of donor solvents. Crystallization from these solvents has resulted in the isolation and characterization of CeBr(3)(THF)(4) (2), CeBr(3)(2-Me-THF)(4) (3), and CeBr(3)(MeCN)(5)·MeCN (4). Additionally, 2 is shown to be an efficient precursor for the new species CeBr(3)(py)(4) (5) and CeBr(3)(bipy)(py)(3) (6).

5.
J Phys Chem B ; 114(5): 1810-4, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20085363

ABSTRACT

Orientational memory in interfacial liquid crystal films occurs when cells heated above the isotropic transition temperature return to their initial ordered texture upon cooling. First observed over 80 years ago, the origins of orientational memory, which is sometimes called the surface memory effect, remain poorly understood. In this study, films of the thermotropic liquid crystal 4'-octyl-4-cyanobiphenyl on graphite were studied by scanning tunneling and polarizing optical microscopy. Strong orientational memory was observed despite relatively weak molecule-surface interactions of the kind previously thought to be responsible for this effect. By preparing cells in a uniformly oriented initial reference state and separately measuring bulk and surface order parameters as systems were thermally disordered, cooperative interactions were found to play an important role, leading to the recovery of long-range order that neither the bulk nor surface layers alone retained. When the surface and bulk layers were partially decoupled using a magnetic field, orientational memory in the surface layer almost disappeared. The findings provide a new interpretation of the origins of orientational memory in liquid crystal films and underscore the potentially important role of cooperativity in bulk <--> interfacial liquid crystal interactions.


Subject(s)
Liquid Crystals/chemistry , Biphenyl Compounds/chemistry , Graphite/chemistry , Nitriles/chemistry , Surface Properties , Transition Temperature
6.
J Am Chem Soc ; 126(19): 5952-3, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15137745

ABSTRACT

Incorporation of silver tetrafluoroborate (AgBF4) into poly(vinyl phenyl ketone) (PVPK) renders the photoluminescent polymer responsive to ethylene. Polymer films prepared with a 2:1 ratio of Ag+ ions to polymer acetophenone groups responded with a quench of photoluminescence. Conditioned films showed a luminescence quench that was proportional to ethylene concentration before saturation occurred. Stern-Volmer analysis of the photoluminescence response suggested the presence of sites that were accessible and sites that were inaccessible to ethylene. Perturbations in polymer-metal interactions were monitored with infrared spectroscopy, revealing changes upon Ag+ incorporation, polymer film conditioning, and exposure to ethylene.


Subject(s)
Borates/chemistry , Ethylenes/chemistry , Polyvinyls/chemistry , Silver Compounds/chemistry , Indicators and Reagents , Luminescent Measurements , Membranes, Artificial , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...