Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 63(10): 1322-1334, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38696389

ABSTRACT

Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.


Subject(s)
Amides , Periplasmic Binding Proteins , Amides/metabolism , Amides/chemistry , Crystallography, X-Ray , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Amino Acids/metabolism , Mesorhizobium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Models, Molecular , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Calcium/metabolism , Protein Binding
2.
Mol Ther ; 28(1): 328-340, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31628051

ABSTRACT

ß-globin lentiviral vectors (ß-LV) have faced challenges in clinical translation for gene therapy of sickle cell disease (SCD) due to low titer and sub-optimal gene transfer to hematopoietic stem and progenitor cells (HSPCs). To overcome the challenge of preserving efficacious expression while increasing vector performance, we used published genomic and epigenomic data available through ENCODE to redefine enhancer element boundaries of the ß-globin locus control region (LCR) to construct novel ENCODE core sequences. These novel LCR elements were used to design a ß-LV of reduced proviral length, termed CoreGA-AS3-FB, produced at higher titers and possessing superior gene transfer to HSPCs when compared to the full-length parental ß-LV at equal MOI. At low vector copy number, vectors containing the ENCODE core sequences were capable of reversing the sickle phenotype in a mouse model of SCD. These studies provide a ß-LV that will be beneficial for gene therapy of SCD by significantly reducing the cost of vector production and extending the vector supply.


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy/methods , Genetic Vectors , Lentivirus/genetics , Locus Control Region/genetics , Transduction, Genetic/methods , beta-Globins/genetics , Animals , Bone Marrow Cells/metabolism , Disease Models, Animal , HEK293 Cells , Healthy Volunteers , Hematopoietic Stem Cells/metabolism , Humans , Mice , Phenotype , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...