Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Undergrad Neurosci Educ ; 15(1): A1-A4, 2016.
Article in English | MEDLINE | ID: mdl-27980463

ABSTRACT

The impact of undergraduate neuroscience programs on the broader landscape of life sciences education has not been described. Using data from the National Center for Education Statistics, we found that the number of undergraduate neuroscience programs in the U.S. continues to grow. Within any given institution, neuroscience programs exist alongside a small number of other life sciences undergraduate programs, suggesting that neuroscience is one of few major options from which students can choose from at many institutions. Neuroscience majors constitute a substantial proportion of all life sciences graduates at many institutions, and in several cases, neuroscience majors were the majority of life sciences graduates. Thus, neuroscience programs contribute substantially to life sciences education, and neuroscience is a highly attractive major among undergraduate students where these programs are available. These data have implications for institutions with existing neuroscience programs as well as for institutions seeking to establish a new program.

2.
J Undergrad Neurosci Educ ; 14(2): A87-90, 2016.
Article in English | MEDLINE | ID: mdl-27385924

ABSTRACT

Undergraduates choose to become neuroscience majors for a number of reasons including future career goals. Faculty and administration of undergraduate neuroscience programs understand that many neuroscience majors have aspirations of applying and matriculating to medical school (Prichard, 2015); however a quantitative understanding of this particular student population remains unknown, especially in the context of the national growth in undergraduate neuroscience education (Ramos et al., 2011). In the present report, we use medical school application data to establish a novel quantitative understanding of the number of neuroscience majors that apply and matriculate to osteopathic medical school. Our data indicate that a substantial number of neuroscience majors do indeed apply and matriculate to medical school compared to other majors in the life sciences, math and physical sciences, and humanities. These data are relevant to faculty and administration of undergraduate neuroscience programs and suggest that when programmatic, curricular, and training decisions are made, they should be made in the context of the diverse motivations and professional goals of neuroscience majors including careers in medicine. Finally, our novel quantitative approach of determining student motivation and professional goals based on application/matriculation data, can complement traditional methods such as surveys and questionnaires and can be used to determine the extent to which neuroscience majors apply to other professional and graduate degree programs.

4.
J Undergrad Neurosci Educ ; 9(2): A66-70, 2011.
Article in English | MEDLINE | ID: mdl-23493915

ABSTRACT

Despite an apparent increase in undergraduate neuroscience programs offered by colleges and universities, there has been little effort to document this growth. In the present report we describe our analysis of the expansion of undergraduate neuroscience programs of study over more than 20 years and detail a number of institutional characteristics of colleges and universities that offer undergraduate neuroscience programs. These data reveal more than 100 institutions with undergraduate neuroscience programs as well as over 2000 college graduates that majored in neuroscience in 2008-2009. Understanding the current number as well as growth trends of undergraduate neuroscience programs found in U.S. colleges and universities has implications for neuroscience educators as well as for the funding of neuroscience research and educational activities.

5.
Cereb Cortex ; 18(11): 2614-28, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18308707

ABSTRACT

Malformations of neocortical development are associated with cognitive dysfunction and increased susceptibility to epileptogenesis. Rodent models are widely used to study neocortical malformations and have revealed important genetic and environmental mechanisms that contribute to neocortical development. Interestingly, several inbred mice strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations. In the present report we examine the cytoarchitecture and myeloarchitecture of the neocortex of 11 inbred mouse strains and identified malformations of cortical development, including molecular layer heterotopia, in all but one strain. We used in silico methods to confirm our observations and determined the transcriptional profiles of cells found within heterotopia. These data indicate cellular and transcriptional diversity present in cells in malformations. Furthermore, the presence of dysplasia in nearly every inbred strain examined suggests that malformations of neocortical development are a common feature in the neocortex of inbred mice.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice, Inbred Strains , Neocortex/abnormalities , Neocortex/physiology , Animals , Animals, Outbred Strains , Choristoma/genetics , Choristoma/pathology , Databases, Genetic , Ion Channels/genetics , Mice , Mice, Inbred A , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Receptors, Neurotransmitter/genetics , Species Specificity , Transcription, Genetic
6.
J Undergrad Neurosci Educ ; 6(2): A53-9, 2008.
Article in English | MEDLINE | ID: mdl-23493521

ABSTRACT

One challenge of neuroscience educators is to make accessible to students as many aspects of brain structure and function as possible. The anatomy and function of the cerebrovasculature is among many topics of neuroscience that are underrepresented in undergraduate neuroscience education. Recognizing this deficit, we evaluated methods to produce archival tissue specimens of the cerebrovasculature and the "neurovascular unit" for instruction and demonstration in the teaching lab. An additional goal of this project was to identify the costs of each method as well as to determine which method(s) could be adapted into lab exercises, where students participate in the tissue preparation, staining, etc. In the present report, we detail several methods for demonstrating the cerebrovasculature and suggest that including this material can be a valuable addition to more traditional anatomy/physiology demonstrations and exercises.

7.
J Undergrad Neurosci Educ ; 6(1): A8-A13, 2007.
Article in English | MEDLINE | ID: mdl-23493835

ABSTRACT

Neuroanatomy can be a challenging topic for undergraduates, making the development of new methods of instruction an important goal of neuroscience educators. In the present report we describe the utility and versatility of the Allen Brain Atlas as a novel tool for instruction of several important anatomical principles of the mammalian central nervous system. Using this digital database, we detail how instructors of laboratory or lecture-based courses can demonstrate cytoarchitecture, cellular diversity, and gene expression profiles of the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...