Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMJ Open ; 14(5): e087516, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816055

ABSTRACT

INTRODUCTION: Late-life treatment-resistant depression (LL-TRD) is common and increases risk for accelerated ageing and cognitive decline. Impaired sleep is common in LL-TRD and is a risk factor for cognitive decline. Slow wave sleep (SWS) has been implicated in key processes including synaptic plasticity and memory. A deficiency in SWS may be a core component of depression pathophysiology. The anaesthetic propofol can induce electroencephalographic (EEG) slow waves that resemble SWS. Propofol may enhance SWS and oral antidepressant therapy, but relationships are unclear. We hypothesise that propofol infusions will enhance SWS and improve depression in older adults with LL-TRD. This hypothesis has been supported by a recent small case series. METHODS AND ANALYSIS: SWIPED (Slow Wave Induction by Propofol to Eliminate Depression) phase I is an ongoing open-label, single-arm trial that assesses the safety and feasibility of using propofol to enhance SWS in older adults with LL-TRD. The study is enrolling 15 English-speaking adults over age 60 with LL-TRD. Participants will receive two propofol infusions 2-6 days apart. Propofol infusions are individually titrated to maximise the expression of EEG slow waves. Preinfusion and postinfusion sleep architecture are evaluated through at-home overnight EEG recordings acquired using a wireless headband equipped with dry electrodes. Sleep EEG recordings are scored manually. Key EEG measures include sleep slow wave activity, SWS duration and delta sleep ratio. Longitudinal changes in depression, suicidality and anhedonia are assessed. Assessments are performed prior to the first infusion and up to 10 weeks after the second infusion. Cognitive ability is assessed at enrolment and approximately 3 weeks after the second infusion. ETHICS AND DISSEMINATION: The study was approved by the Washington University Human Research Protection Office. Recruitment began in November 2022. Dissemination plans include presentations at scientific conferences, peer-reviewed publications and mass media. Positive results will lead to a larger phase II randomised placebo-controlled trial. TRIAL REGISTRATION NUMBER: NCT04680910.


Subject(s)
Cognitive Dysfunction , Propofol , Sleep, Slow-Wave , Humans , Propofol/administration & dosage , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Aged , Sleep, Slow-Wave/drug effects , Electroencephalography , Male , Anesthetics, Intravenous/administration & dosage , Depressive Disorder, Treatment-Resistant/drug therapy , Female , Middle Aged , Clinical Trials, Phase I as Topic
2.
BJA Open ; 10: 100276, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571816

ABSTRACT

Background: The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods: In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results: Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions: Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration: ClinicalTrials.gov NCT04206059.

3.
Front Psychiatry ; 13: 996733, 2022.
Article in English | MEDLINE | ID: mdl-36405897

ABSTRACT

Introduction: Electroconvulsive therapy (ECT) is an effective intervention for patients with major depressive disorder (MDD). Despite longstanding use, the underlying mechanisms of ECT are unknown, and there are no objective prognostic biomarkers that are routinely used for ECT response. Two electroencephalographic (EEG) markers, sleep slow waves and sleep spindles, could address these needs. Both sleep microstructure EEG markers are associated with synaptic plasticity, implicated in memory consolidation, and have reduced expression in depressed individuals. We hypothesize that ECT alleviates depression through enhanced expression of sleep slow waves and sleep spindles, thereby facilitating synaptic reconfiguration in pathologic neural circuits. Methods: Correlating ECT Response to EEG Markers (CET-REM) is a single-center, prospective, observational investigation. Wireless wearable headbands with dry EEG electrodes will be utilized for at-home unattended sleep studies to allow calculation of quantitative measures of sleep slow waves (EEG SWA, 0.5-4 Hz power) and sleep spindles (density in number/minute). High-density EEG data will be acquired during ECT to quantify seizure markers. Discussion: This innovative study focuses on the longitudinal relationships of sleep microstructure and ECT seizure markers over the treatment course. We anticipate that the results from this study will improve our understanding of ECT.

6.
BMJ Open ; 10(12): e044295, 2020 12 13.
Article in English | MEDLINE | ID: mdl-33318123

ABSTRACT

INTRODUCTION: Delirium is a potentially preventable disorder characterised by acute disturbances in attention and cognition with fluctuating severity. Postoperative delirium is associated with prolonged intensive care unit and hospital stay, cognitive decline and mortality. The development of biomarkers for tracking delirium could potentially aid in the early detection, mitigation and assessment of response to interventions. Because sleep disruption has been posited as a contributor to the development of this syndrome, expression of abnormal electroencephalography (EEG) patterns during sleep and wakefulness may be informative. Here we hypothesise that abnormal EEG patterns of sleep and wakefulness may serve as predictive and diagnostic markers for postoperative delirium. Such abnormal EEG patterns would mechanistically link disrupted thalamocortical connectivity to this important clinical syndrome. METHODS AND ANALYSIS: P-DROWS-E (Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography) is a 220-patient prospective observational study. Patient eligibility criteria include those who are English-speaking, age 60 years or older and undergoing elective cardiac surgery requiring cardiopulmonary bypass. EEG acquisition will occur 1-2 nights preoperatively, intraoperatively, and up to 7 days postoperatively. Concurrent with EEG recordings, two times per day postoperative Confusion Assessment Method (CAM) evaluations will quantify the presence and severity of delirium. EEG slow wave activity, sleep spindle density and peak frequency of the posterior dominant rhythm will be quantified. Linear mixed-effects models will be used to evaluate the relationships between delirium severity/duration and EEG measures as a function of time. ETHICS AND DISSEMINATION: P-DROWS-E is approved by the ethics board at Washington University in St. Louis. Recruitment began in October 2018. Dissemination plans include presentations at scientific conferences, scientific publications and mass media. TRIAL REGISTRATION NUMBER: NCT03291626.


Subject(s)
Cardiac Surgical Procedures , Delirium , Aged , Delirium/diagnosis , Electroencephalography , Humans , Middle Aged , Observational Studies as Topic , Sleep , Wakefulness , Washington
7.
Int Rev Neurobiol ; 154: 393-412, 2020.
Article in English | MEDLINE | ID: mdl-32739012

ABSTRACT

The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.


Subject(s)
Chronobiology Disorders/metabolism , Mitochondria/metabolism , NAD/metabolism , Neurodegenerative Diseases/metabolism , Sirtuins/metabolism , Sleep Wake Disorders/metabolism , Chronobiology Disorders/complications , Humans , Neurodegenerative Diseases/etiology , Sleep Wake Disorders/etiology
8.
Anesthesiology ; 129(4): 829-851, 2018 10.
Article in English | MEDLINE | ID: mdl-29621031

ABSTRACT

For half a century, it has been known that some patients experience neurocognitive dysfunction after cardiac surgery; however, defining its incidence, course, and causes remains challenging and controversial. Various terms have been used to describe neurocognitive dysfunction at different times after cardiac surgery, ranging from "postoperative delirium" to "postoperative cognitive dysfunction or decline." Delirium is a clinical diagnosis included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Postoperative cognitive dysfunction is not included in the DSM-5 and has been heterogeneously defined, though a recent international nomenclature effort has proposed standardized definitions for it. Here, the authors discuss pathophysiologic mechanisms that may underlie these complications, review the literature on methods to prevent them, and discuss novel approaches to understand their etiology that may lead to novel treatment strategies. Future studies should measure both delirium and postoperative cognitive dysfunction to help clarify the relationship between these important postoperative complications.


Subject(s)
Cardiac Surgical Procedures/adverse effects , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Mental Status and Dementia Tests , Postoperative Complications/diagnosis , Postoperative Complications/psychology , Cardiac Surgical Procedures/trends , Cognitive Dysfunction/epidemiology , Humans , Neuropsychological Tests , Phenotype , Postoperative Complications/epidemiology
9.
A A Pract ; 11(2): 29-31, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29634575

ABSTRACT

Pancoast-Tobias syndrome characterizes the signs and symptoms of a superior pulmonary sulcus tumor, and includes arm and shoulder pain, atrophy of intrinsic hand muscles, and ipsilateral Horner syndrome. The rarity and overall poor prognosis of patients with superior pulmonary sulcus tumors associated with Pancoast-Tobias syndrome has led to few reports detailing pain management strategies with adjunctive therapies, such as continuous infusions of ketamine and lidocaine, chemotherapy, radiation, and multimodal oral medication regimens. This case highlights the diagnosis and treatment of pain in a patient with Pancoast-Tobias syndrome.


Subject(s)
Analgesics, Opioid/therapeutic use , Conservative Treatment , Methadone/therapeutic use , Neuralgia/drug therapy , Pancoast Syndrome/drug therapy , Female , Humans , Middle Aged
11.
Proc Natl Acad Sci U S A ; 110(13): E1222-31, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23479640

ABSTRACT

Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm's C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo's interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Meiosis/physiology , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Cycle Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Male , Phosphorylation/physiology , Protein Binding/physiology , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Spectrometry, Fluorescence
12.
Cell Cycle ; 7(6): 698-701, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18245949

ABSTRACT

Cell cycle progression in female meiotic systems is characterized by the presence of two or more pre-programmed arrests. One such arrest is invariable throughout all species--a lengthy G(2) arrest that separates the end of pachytene (by which homologous chromosomes have condensed, paired and undergone recombination) from nuclear envelope breakdown (NEB). The termination of G(2) arrest (as defined by NEB) and the subsequent entry of the oocyte into prometaphase is regulated by an intracellular signaling cascade whose ultimate feature is the activation of the cyclin B-Cdk1 complex by the Cdc25 phosphatase family. In oocytes, activation of Cdc25 is often mediated by Polo-like kinases (Plks). Recent work by Xiang et al. demonstrated that in Drosophila female meiosis, Polo's role in promoting NEB is regulated by meiosis-specific stoichiometric inhibitor called Matrimony (Mtrm), which binds to the C-terminal Polo-box domain (PBD) of Polo. In addition to a PBD-binding site, Mtrm contains putative Plk and cyclin B-Cdk1 phosphorylation consensus motifs. These motifs suggest a unique mechanism of Polo inhibition by Mtrm and a possible auto-amplification loop by which cyclin B-Cdk1-mediated destruction or dissociation of Mtrm from Polo allows for rapid and irreversible G(2) exit and entry into prometaphase.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Meiosis/physiology , Prometaphase/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , cdc25 Phosphatases/metabolism , Animals , Female , Models, Biological
13.
Biol Reprod ; 78(6): 1139-52, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18218611

ABSTRACT

Gamendazole was recently identified as an orally active antispermatogenic compound with antifertility effects. The cellular mechanism(s) through which these effects occur and the molecular target(s) of gamendazole action are currently unknown. Gamendazole was recently designed as a potent orally active antispermatogenic male contraceptive agent. Here, we report the identification of binding targets and propose a testable mechanism of action for this antispermatogenic agent. Both HSP90AB1 (previously known as HSP90beta [heat shock 90-kDa protein 1, beta]) and EEF1A1 (previously known as eEF1A [eukaryotic translation elongation factor 1 alpha 1]) were identified as binding targets by biotinylated gamendazole (BT-GMZ) affinity purification from testis, Sertoli cells, and ID8 ovarian cancer cells; identification was confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and Western blot analysis. BT-GMZ bound to purified yeast HSP82 (homologue to mammalian HSP90AB1) and EEF1A1, but not to TEF3 or HBS1, and was competed by unlabeled gamendazole. However, gamendazole did not inhibit nucleotide binding by EEF1A1. Gamendazole binding to purified Saccharomyces cerevisiae HSP82 inhibited luciferase refolding and was not competed by the HSP90 drugs geldanamycin or novobiocin analogue, KU-1. Gamendazole elicited degradation of the HSP90-dependent client proteins AKT1 and ERBB2 and had an antiproliferative effect in MCF-7 cells without inducing HSP90. These data suggest that gamendazole may represent a new class of selective HSP90AB1 and EEF1A1 inhibitors. Testis gene microarray analysis from gamendazole-treated rats showed a marked, rapid increase in three interleukin 1 genes and Nfkbia (NF-kappaB inhibitor alpha) 4 h after oral administration. A spike in II1a transcription was confirmed by RT-PCR in primary Sertoli cells 60 min after exposure to 100 nM gamendazole, demonstrating that Sertoli cells are a target. AKT1, NFKB, and interleukin 1 are known regulators of the Sertoli cell-spermatid junctional complexes. A current model for gamendazole action posits that this pathway links interaction with HSP90AB1 and EEF1A1 to the loss of spermatids and resulting infertility.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Indazoles/pharmacology , Interleukin-1alpha/genetics , Peptide Elongation Factor 1/antagonists & inhibitors , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Spermatogenesis-Blocking Agents/pharmacology , Administration, Oral , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cell Line, Tumor , Female , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Indazoles/administration & dosage , Male , Models, Biological , Molecular Sequence Data , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Rats , Spermatogenesis-Blocking Agents/administration & dosage , Testis/drug effects , Testis/metabolism , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...